A092553 Decimal expansion of 1/e^2.
1, 3, 5, 3, 3, 5, 2, 8, 3, 2, 3, 6, 6, 1, 2, 6, 9, 1, 8, 9, 3, 9, 9, 9, 4, 9, 4, 9, 7, 2, 4, 8, 4, 4, 0, 3, 4, 0, 7, 6, 3, 1, 5, 4, 5, 9, 0, 9, 5, 7, 5, 8, 8, 1, 4, 6, 8, 1, 5, 8, 8, 7, 2, 6, 5, 4, 0, 7, 3, 3, 7, 4, 1, 0, 1, 4, 8, 7, 6, 8, 9, 9, 3, 7, 0, 9, 8, 1, 2, 2, 4, 9, 0, 6, 5, 7, 0, 4, 8, 7, 5, 5, 0, 7, 7
Offset: 0
Examples
0.1353352832366...
Links
- M. H. Albert, M. D. Atkinson and M. Klazar, The enumeration of simple permutations, J. Integer Seq. 6 (2003) 03.4.4. arXiv:math/0304213.
- R. Brignall, A survey of simple permutations, Permutation Patterns, ed. S. Linton, N. Ruškuc and V. Vatter, Cambridge Univ. Press, 2010, pp. 41—65; arXiv:0801.0963.
- Paul J. Flory, Intramolecular reaction between neighboring substituents of vinyl polymers, Journal of the American Chemical Society 61:6 (1939), pp. 1518-1521.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[N[1/E^2,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
-
PARI
exp(-2) \\ Charles R Greathouse IV, Nov 30 2012
Formula
From Peter Bala, Oct 27 2019: (Start)
1/e^2 = Sum_{k >= 0} (-2)^k/k!.
This is the case n = 0 of the following series acceleration formulas:
Comments