cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092573 Number of solutions to x^2 + 3y^2 = n in positive integers x and y.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Crossrefs

Programs

  • Maple
    N:= 300: # to get a(0)..a(N)
    V:= Vector(N):
    for y from 1 to floor(sqrt(N/3-1)) do
      js:= [seq(x^2+3*y^2, x=1..floor(sqrt(N-3*y^2)))];
      V[js]:= map(`+`,V[js],1);
    od:
    0,op(convert(V,list)); # Robert Israel, Apr 03 2017
  • Mathematica
    r[z_] := Reduce[x > 0 && y > 0 && x^2 + 3 y^2 == z, {x, y}, Integers]; Table[rz = r[z]; If[rz === False, 0, If[rz[[0]] === Or, Length[rz], 1]], {z, 0, 102}] (* Jean-François Alcover, Oct 23 2012 *)
    gf = (EllipticTheta[3, 0, x]-1)*(EllipticTheta[3, 0, x^3]-1)/4 + O[x]^105;
    CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2018, after Robert Israel *)

Formula

a(n) = ( A033716(n) - A000122(n) - A000122(n/3) + A000007(n) )/4. - Max Alekseyev, Sep 29 2012
G.f.: (Theta_3(0,x)-1)*(Theta_3(0,x^3)-1)/4 where Theta_3 is a Jacobi theta function. - Robert Israel, Apr 03 2017

Extensions

Definition corrected by David A. Corneth, Apr 03 2017