A092573 Number of solutions to x^2 + 3y^2 = n in positive integers x and y.
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- E. Akhtarkavan, M. F. M. Salleh and O. Sidek, Multiple Descriptions Video Coding Using Coinciding Lattice Vector Quantizer for H.264/AVC and Motion JPEG2000, World Applied Sciences Journal 21 (2): 157-169, 2013. - From _N. J. A. Sloane_, Feb 11 2013
- Eric Weisstein's World of Mathematics, Euler's 6n+1 Theorem
Programs
-
Maple
N:= 300: # to get a(0)..a(N) V:= Vector(N): for y from 1 to floor(sqrt(N/3-1)) do js:= [seq(x^2+3*y^2, x=1..floor(sqrt(N-3*y^2)))]; V[js]:= map(`+`,V[js],1); od: 0,op(convert(V,list)); # Robert Israel, Apr 03 2017
-
Mathematica
r[z_] := Reduce[x > 0 && y > 0 && x^2 + 3 y^2 == z, {x, y}, Integers]; Table[rz = r[z]; If[rz === False, 0, If[rz[[0]] === Or, Length[rz], 1]], {z, 0, 102}] (* Jean-François Alcover, Oct 23 2012 *) gf = (EllipticTheta[3, 0, x]-1)*(EllipticTheta[3, 0, x^3]-1)/4 + O[x]^105; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2018, after Robert Israel *)
Formula
G.f.: (Theta_3(0,x)-1)*(Theta_3(0,x^3)-1)/4 where Theta_3 is a Jacobi theta function. - Robert Israel, Apr 03 2017
Extensions
Definition corrected by David A. Corneth, Apr 03 2017