cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092676 Numerators of coefficients in the series for inverf(2x/sqrt(Pi)).

Original entry on oeis.org

1, 1, 7, 127, 4369, 34807, 20036983, 2280356863, 49020204823, 65967241200001, 15773461423793767, 655889589032992201, 94020690191035873697, 655782249799531714375489, 44737200694996264619809969
Offset: 1

Views

Author

Eric W. Weisstein, Mar 02 2004

Keywords

Comments

Differs from A002067(n) at n = 6, 9, 12, ....
Following Blair et al., we use the notation inverf() for the inverse of the error function.

Examples

			Inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
The first few coefficients are 1, 1, 7/6, 127/90, 4369/2520, 34807/16200, 20036983/7484400, 2280356863/681080400, ...
		

Crossrefs

Cf. A002067, A092677, A052712. For denominators see A132467.

Programs

  • Maple
    c:=proc(n) option remember; if n <= 0 then 1 else add( c(k)*c(n-k-1)/((k+1)*(2*k+1)), k=0..n-1 ) fi; end;
  • Mathematica
    Numerator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}], x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *)

Extensions

Edited by N. J. A. Sloane, Nov 15 2007