A132467
Denominators associated with Taylor series expansion of inverse error function. See A092676 for numerators and further information.
Original entry on oeis.org
1, 1, 6, 90, 2520, 16200, 7484400, 681080400, 11675664000, 12504636144000, 2375880867360000, 78404068622880000, 8910391798788480000, 49229914688306352000000, 2658415393168543008000000, 476169110129306674080000000, 4015057936610313875842560000000, 321778214634055154906810880000000
Offset: 0
A002067
a(n) = Sum_{k=0..n-1} binomial(2*n,2*k)*a(k)*a(n-k-1).
Original entry on oeis.org
1, 1, 7, 127, 4369, 243649, 20036983, 2280356863, 343141433761, 65967241200001, 15773461423793767, 4591227123230945407, 1598351733247609852849, 655782249799531714375489, 313160404864973852338669783, 172201668512657346455126457343, 108026349476762041127839800617281
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 7*x^4/4! + 127*x^6/6! + 4369*x^8/8! + ...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, cf. Chapter 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..50
- L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470. [See Eq. 1.3 and Section 6.]
- D. Dominici, Asymptotic analysis of the derivatives of the inverse error function, arXiv:math/0607230 [math.CA], 2006-2007.
- A. J. E. M. Janssen, Analysis of a constrained initial value for an ODE arising in the study of a power-flow model, Eindhoven Univ. Tech. (Netherlands, 2023).
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
- Wikipedia, Error Function
- Index entries for sequences related to cacti
-
a:=proc(n) option remember; if n <= 0 then RETURN(1); else RETURN( add( binomial(2*n,2*k)*a(k)*a(n-k-1), k=0..n-1 ) ); fi; end;
-
max = 16; se = Series[ InverseErf[ 2*x/Sqrt[Pi] ], {x, 0, 2*max+1} ]; a[n_] := (2n+1)!/2^n*Coefficient[ se, x, 2*n+1]; Table[ a[n], {n, 0, max} ] (* Jean-François Alcover, Mar 07 2012, after Paul Barry *)
-
/* E.g.f. A(x) = exp( Integral A(x) * Integral A(x) dx dx ): */
{a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( A * intformal( A + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", ")) \\ Paul D. Hanna, Jun 02 2015
-
/* By definition: */
{a(n) = if(n==0,1,sum(k=0,n-1, binomial(2*n,2*k)*a(k)*a(n-k-1)))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jun 02 2015
A092677
Denominators of coefficients in the series for inverf(2x/sqrt(Pi)).
Original entry on oeis.org
1, 3, 30, 630, 22680, 178200, 97297200, 10216206000, 198486288000, 237588086736000, 49893498214560000, 1803293578326240000, 222759794969712000000, 1329207696584271504000000
Offset: 1
inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
- G. C. Greubel, Table of n, a(n) for n = 1..235
- G. Alkauskas, Algebraic and abelian solutions to the projective translation equation, arXiv preprint arXiv:1506.08028 [math.AG], 2015-2016; Aequationes Math. 90 (4) (2016), 727-763.
- J. M. Blair, C. A. Edwards and J. H. Johnson, Rational Chebyshev approximations for the inverse of the error function, Math. Comp. 30 (1976), 827-830.
- L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470.
- Eric Weisstein, Mathematica program and first 50 terms of the series
- Eric Weisstein's World of Mathematics, Inverse Erf
-
Denominator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}],
x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *)
A122551
Denominators of the coefficients of the series for InverseErf(x).
Original entry on oeis.org
2, 24, 960, 80640, 11612160, 2554675200, 797058662400, 334764638208000, 182111963185152000, 124564582818643968000, 104634249567660933120000, 105889860562472864317440000, 127067832674967437180928000000
Offset: 0
Marcus Blackburn (marcus.blackburn(AT)dial.pipex.com), Sep 20 2006
InverseErf(x) = (1/2*sqrt(Pi))*x + (1/24*Pi^(3/2))*x^3 + (7/960*Pi^(5/2))*x^5 + (127/80640*Pi^(7/2))*x^7 + (4369/11612160*Pi^(9/2))*x^9 + (243649/2554675200*Pi^(11/2))*x^11 + ...
-
denominators:=[seq((2*n+1)!*2^(n+1),n=0..14)]; a:=proc(n) if(n < 2) then RETURN(1) fi; sum('binomial(2*n,2*k)*a(k)*a(n-k-1)','k'=0..n-1); end; numerators:=[seq(a(n),n=0..14)];
-
Table[(2*n + 1)!*2^(n + 1), {n,0,25}] (* G. C. Greubel, Mar 19 2017 *)
-
for(n=0,25, print1((2*n+1)!*2^(n+1), ", ")) \\ G. C. Greubel, Mar 19 2017
Showing 1-4 of 4 results.
Comments