cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A122149 Period of A002067 mod n.

Original entry on oeis.org

1, 1, 1, 4, 8, 1, 3, 4, 9, 8, 10, 4, 24, 3, 8, 4, 32, 9, 18, 8, 3, 10, 22, 4
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2008

Keywords

Examples

			A002067 mod 5 is 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, ... with period 8.
		

Crossrefs

Programs

  • Mathematica
    max = 40; se = Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 2*max + 1}]; a[n_] := (2*n + 1)!/2^n*Coefficient[se, x, 2*n + 1]; A002067 = Table[a[n], {n, 0, max}]; period[lst_List] := Catch[lg = If[Length[lst] <= 5, 2, 5]; lst1 = lst[[1 ;; lg]]; km = Length[lst] - lg; Do[ If[lst1 == lst[[k ;; k+lg-1]], Throw[k-1]]; If[k == km, Throw[0]], {k, 2, km}]]; Table[period[Mod[A002067, n] // Reverse], {n, 1, 24}] (* Jean-François Alcover, Dec 17 2012 *)

Extensions

Extended to 24 terms by Jean-François Alcover, Dec 17 2012

A122159 Period of A002067 modulo prime(n).

Original entry on oeis.org

1, 1, 8, 3, 10, 24, 32, 18, 22, 56, 30, 72, 80, 42, 23, 104, 29, 120, 66, 70, 144, 39, 41, 176, 192, 200, 51, 53, 216, 224, 63, 130, 272, 69, 296, 150, 312, 162, 166, 344, 178, 360, 95, 384, 392, 99, 105, 222, 226, 456, 464, 238, 480, 125, 512, 131, 536, 270, 552
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2008

Keywords

Examples

			A002067 modulo 5 is 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, ... with period 8.
		

Crossrefs

Programs

  • Mathematica
    max = 100; se = Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 2*max + 1}]; a[n_] := (2 n + 1)!/2^n*Coefficient[se, x, 2*n + 1]; A002067 = Table[a[n], {n, 0, max}]; period[lst_List] := Catch[lg = If[Length[lst] <= 5, 2, 5]; lst1 = lst[[1 ;; lg]]; km = Length[lst] - lg; Do[If[lst1 == lst[[k ;; k + lg - 1]], Throw[k - 1]]; If[k == km, Throw[0]], {k, 2, km}]]; Table[ period[Mod[A002067, Prime[n]] // Reverse] , {n, 1, 15}] (* Jean-François Alcover, Dec 17 2012 *)

Formula

a(n) = A122149(A000040(n)).

Extensions

a(9)-a(15) from Jean-François Alcover, Dec 17 2012
More terms from Jinyuan Wang, Jul 30 2022

A007019 a(n) = (2n+1)! / 2^n.

Original entry on oeis.org

1, 3, 30, 630, 22680, 1247400, 97297200, 10216206000, 1389404016000, 237588086736000, 49893498214560000, 12623055048283680000, 3786916514485104000000, 1329207696584271504000000, 539658324813214230624000000, 250941121038144617240160000000, 132496911908140357902804480000000
Offset: 0

Views

Author

Keywords

Comments

Denominators of coefficients of the Taylor series of sinh(sqrt(2*x))/(sqrt(2*x)). - J. Zurita (jrzurita(AT)inaoep.mx), Dec 01 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerators: A002067, erf(x): A007680.

Programs

  • Magma
    [Factorial(2*n+1)/2^n: n in [0..25]]; // Vincenzo Librandi, May 14 2011
    
  • Maple
    a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*(n-1) od: seq(a[n], n=1..14); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    Table[(2n+1)!/2^n,{n,0,20}] (* Harvey P. Dale, May 13 2011 *)
  • PARI
    a(n) = (2*n+1)!/2^n; \\ Altug Alkan, Aug 27 2018

Formula

sin(x)*cosh(x) = Sum_{n>=0} (-1)^floor(n/2)*x^(2n+1)/a(n). - Benoit Cloitre, Feb 02 2002
a(n) = Product_{k=0..n-1} (A000217(n+1) - A000217(k)). - Anton Zakharov, Sep 14 2016
a(n) ~ sqrt(Pi)*2^(n+2)*n^(2*n+3/2)/exp(2*n). - Ilya Gutkovskiy, Sep 14 2016
a(n) = Product_{j=1..n} T(2j) (where T(k) is the k-th triangular number). For example: a(3) = T(2)*T(4)*T(6) (that is, 630 = 3*10*21). - Rigoberto Florez, Aug 26 2018
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sinh(sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(sqrt(2))/sqrt(2). (End)

A092676 Numerators of coefficients in the series for inverf(2x/sqrt(Pi)).

Original entry on oeis.org

1, 1, 7, 127, 4369, 34807, 20036983, 2280356863, 49020204823, 65967241200001, 15773461423793767, 655889589032992201, 94020690191035873697, 655782249799531714375489, 44737200694996264619809969
Offset: 1

Views

Author

Eric W. Weisstein, Mar 02 2004

Keywords

Comments

Differs from A002067(n) at n = 6, 9, 12, ....
Following Blair et al., we use the notation inverf() for the inverse of the error function.

Examples

			Inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
The first few coefficients are 1, 1, 7/6, 127/90, 4369/2520, 34807/16200, 20036983/7484400, 2280356863/681080400, ...
		

Crossrefs

Cf. A002067, A092677, A052712. For denominators see A132467.

Programs

  • Maple
    c:=proc(n) option remember; if n <= 0 then 1 else add( c(k)*c(n-k-1)/((k+1)*(2*k+1)), k=0..n-1 ) fi; end;
  • Mathematica
    Numerator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}], x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *)

Extensions

Edited by N. J. A. Sloane, Nov 15 2007

A026944 E.g.f. is inverse function to y -> integral from 0 to y of exp(-s^2).

Original entry on oeis.org

1, 2, 28, 1016, 69904, 7796768, 1282366912, 291885678464, 87844207042816, 33775227494400512, 16152024497964817408, 9402833148376976193536, 6546848699382209957269504, 5372168190357763804164005888, 5130820073307731596716765724672, 5642704273822755928641583754215424
Offset: 1

Views

Author

F. Chapoton, Mar 22 2000

Keywords

Comments

The generating function is odd, so this list contains only the nonzero coefficients in the Taylor expansion.
Limit_{n->oo} (a(n)/(n!)^2)^(1/n) = 16/Pi. - Vaclav Kotesovec, Nov 19 2014

Crossrefs

Cf. A002067.

Programs

  • Mathematica
    MakeTable[n_] := Select[CoefficientList[Series[InverseErf[2x/Sqrt[Pi]],{x,0,2n+1}],x] Table[k!, {k,0,2n+1}], # != 0 &]; MakeTable[15] (* Emanuele Munarini, Dec 17 2012 *)
    nmax=20; c = ConstantArray[0,nmax]; c[[1]]=1; Do[c[[k+1]] = Sum[c[[m+1]]*c[[k-m]]/(m+1)/(2*m+1),{m,0,k-1}],{k,1,nmax-1}]; A026944=c*(2*Range[0,nmax-1])! (* Vaclav Kotesovec, Feb 25 2014 *)
  • Maxima
    f(n):=n!/2*coeff(taylor(2*inverse_erf(2*x/sqrt(%pi)),x,0,n),x,n); makelist(f(2*n+1),n,0,12); /* Emanuele Munarini, Dec 17 2012 */
  • PARI
    v=Vec(serlaplace(serreverse(intformal(exp(-x^2)))));
    vector(#v\2,n,v[2*n-1])  /* show terms */
    /* Demonstration of Kruchinin's differential equation: */
    default(seriesprecision,55); /* that many terms */
    A=serreverse(intformal(exp(-x^2))); /* e.g.f. */
    deriv(A)-exp(A^2)  /* gives O(x^57), i.e., zero up to order */
    

Formula

Nonzero constant terms of the polynomials P_{2n-1} in t defined by P_1=1, P_{n+1} = P'n+2*n*t*P_n.
E.g.f.: (1/2*sqrt(Pi)*erf)^{-1}(x).
a(n) = A002067(n-1) * 2^(n-1).
E.g.f. A(x) satisfies the differential equation A'(x) = exp(A(x)^2). - Vladimir Kruchinin, Jan 22 2011
Let D denote the operator g(x) -> d/dx(exp(x^2)*g(x)). Then a(n) = D^(2*n-2)(1) evaluated at x = 0. See [Dominici, Example 11]. - Peter Bala, Sep 08 2011

A122551 Denominators of the coefficients of the series for InverseErf(x).

Original entry on oeis.org

2, 24, 960, 80640, 11612160, 2554675200, 797058662400, 334764638208000, 182111963185152000, 124564582818643968000, 104634249567660933120000, 105889860562472864317440000, 127067832674967437180928000000
Offset: 0

Views

Author

Marcus Blackburn (marcus.blackburn(AT)dial.pipex.com), Sep 20 2006

Keywords

Comments

Note: the term in x^11 in the series expansion above has a common factor of 7 between the numerator and denominator and is usually written 34807/364953600. The common factor of 7 occurs at n=6, 9, 12, etc. The sequence of the coefficients can be generated by combining this series with A002067.

Examples

			InverseErf(x) = (1/2*sqrt(Pi))*x + (1/24*Pi^(3/2))*x^3 + (7/960*Pi^(5/2))*x^5 + (127/80640*Pi^(7/2))*x^7 + (4369/11612160*Pi^(9/2))*x^9 + (243649/2554675200*Pi^(11/2))*x^11 + ...
		

Crossrefs

Programs

  • Maple
    denominators:=[seq((2*n+1)!*2^(n+1),n=0..14)]; a:=proc(n) if(n < 2) then RETURN(1) fi; sum('binomial(2*n,2*k)*a(k)*a(n-k-1)','k'=0..n-1); end; numerators:=[seq(a(n),n=0..14)];
  • Mathematica
    Table[(2*n + 1)!*2^(n + 1), {n,0,25}] (* G. C. Greubel, Mar 19 2017 *)
  • PARI
    for(n=0,25, print1((2*n+1)!*2^(n+1), ", ")) \\ G. C. Greubel, Mar 19 2017

Formula

a(n) = (2*n+1)!*2^(n+1).
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = sinh(1/sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(1/sqrt(2))/sqrt(2). (End)

A320842 Regular triangle whose rows are the coefficients of the Dominici expansion of f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t.

Original entry on oeis.org

1, 7, 3, 127, 123, 30, 4369, 6822, 3579, 630, 243649, 532542, 439899, 162630, 22680, 20036983, 56717781, 64697499, 37155267, 10735470, 1247400, 2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200, 343141433761, 1427877062076, 2563294235106, 2572662311496, 1558544277681, 569674791180, 116270210700, 10216206000
Offset: 1

Views

Author

Matthew Miller, Dec 11 2018

Keywords

Comments

It appears that the first column (7, 127, 4369, ...) is from the sequence A002067.
It appears that the diagonal (3, 30, 630, ...) is from the sequence A007019.
It appears as though the unsigned row sum (10, 280, 15400, ...) is from the sequence A025035.
It appears as though the alternating sign row sum (sum(7, -3) = 4, sum(-127, 123, -30) = -34, ...) is from the sequence A002105.
This triangular array arises as the coefficients from terms in the inverse expansion of the function f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t evaluated at t = 0 for even values of the operation, using a method of Dominici's (nested derivatives, referenced below).
Without proof, appears to be related to computing the 'critical t-value' of Student's t-distribution. (conj.) Critical t-value t_(v, beta) is equal to: sqrt((v/(1-S^2)) - v) where S = (1/2)*Sum_{k>=1} (D^(2*k-2)[f](0)*(1/(2*k-1)!)*(B(1/2, v/2)*(1-2*beta))^(2*k-1)); where (1 - beta) is the confidence interval 'atta' (for a one-tailed distribution such that 'cumulative probability' = t_atta, where beta = 1-atta), x = 1 - (v/2), v: degrees of freedom, B(1/2, v/2) = gamma(1/2)*gamma(v/2)/gamma(1/2 + v/2), D^(2*k - 2)[f](0) is a polynomial function of 'x' whose coefficients are the terms of this sequence as computed using a method of Dominici's on f(t,x) with respect to t (referenced below).

Examples

			Given D^k[f]_(b) = (d/dt [f(t)*D^(k-1)[f](t)])_t = b where D^0[f](b) = 1, then for f(t,x) = (1/2)*(1 - t^2)^(-x) where f(0) = 1/2 one obtains: D^2[f]_(0) = -x/2, D^4[f]_(0) = (x/4)*(7*x - 3), D^6[f]_(0) = -(x/8)*(127*x^2 - 123*x + 30), etc., where b is an arbitrary constant.
Triangle begins:
           1;
           7,          3;
         127,        123,          30;
        4369,       6822,        3579,        630;
      243649,     532542,      439899,     162630,      22680;
    20036983,   56717781,    64697499,   37155267,   10735470,   1247400;
  2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200;
         ...
		

Crossrefs

Showing 1-7 of 7 results.