A092693 Sum of iterated phi(n).
0, 1, 3, 3, 7, 3, 9, 7, 9, 7, 17, 7, 19, 9, 15, 15, 31, 9, 27, 15, 19, 17, 39, 15, 35, 19, 27, 19, 47, 15, 45, 31, 35, 31, 39, 19, 55, 27, 39, 31, 71, 19, 61, 35, 39, 39, 85, 31, 61, 35, 63, 39, 91, 27, 71, 39, 55, 47, 105, 31, 91, 45, 55, 63, 79, 35, 101, 63, 79, 39, 109, 39, 111
Offset: 1
Keywords
Examples
a(100) = 71 because the iterations of phi (40, 16, 8, 4, 2, 1) sum to 71.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- C. Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015) # 15.2.1
- P. Erdos and M. V. Subbarao, On the iterates of some arithmetic functions, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich. 1971), Lecture Notes in Math., 251 , pp. 119-125, Springer, Berlin, 1972. [alternate link]
- Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On perfect totient numbers, J. Integer Sequences, 6 (2003), #03.4.5.
Crossrefs
Programs
-
Haskell
a092693 1 = 0 a092693 n = (+ 1) $ sum $ takeWhile (/= 1) $ iterate a000010 $ a000010 n -- Reinhard Zumkeller, Oct 27 2011
-
Mathematica
nMax=100; a=Table[0, {nMax}]; Do[e=EulerPhi[n]; a[[n]]=e+a[[e]], {n, 2, nMax}]; a (* T. D. Noe *) Table[Plus @@ FixedPointList[EulerPhi, n] - (n + 1), {n, 72}] (* Alonso del Arte, Jan 29 2007 *)
-
PARI
a(n)=my(k);while(n>1,k+=n=eulerphi(n));k \\ Charles R Greathouse IV, Mar 22 2012
-
Python
from sympy import totient from math import prod def f(n): m = n while m > 1: m = totient(m) yield m def A092693(n): return sum(f(n)) # Chai Wah Wu, Nov 14 2021
Formula
a(1) = 0, a(n) = phi(n) + a(phi(n))
a(n) = A053478(n) - n. - Vladeta Jovovic, Jul 02 2004
Erdős & Subbarao prove that a(n) ~ phi(n) for almost all n. In particular, a(n) < n for almost all n. The proportion of numbers up to N for which a(n) > n is at most 1/log log log log N. - Charles R Greathouse IV, Mar 22 2012
Comments