A092853
Number of composites > mean composite (=A092802(n)) below 10^n.
Original entry on oeis.org
2, 37, 418, 4398, 45288, 461339, 4671939, 47150884, 474823446, 4774453663, 47957215384, 481331669604, 4828116680970, 48407394207052, 485163305702187
Offset: 1
At 10^1 there are 4 composites: 4+6+8+9=27. The rounded mean is 27\4=7. there are 2 composites over 7: 8 and 9, so a(1)=2.
A092852
Number of composites <= A092802(n).
Original entry on oeis.org
2, 36, 412, 4371, 45118, 460161, 4663480, 47087659, 474329018, 4770493824, 47924729801, 481060418376, 4825817782189, 48387664042144, 484992123875142, 4859631205206357, 48681601698828085, 487571138851821274, 4882443976989269954, 48884842829781286250, 489393391263430721900
Offset: 1
Up to 10^1 there are 4 composites: 4 + 6 + 8 + 9 = 27. The rounded mean is A092802(1) = floor(27/4) = 7. There are 2 composites below 7: 4 and 6, so a(1) = 2.
a(16)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Sep 05 2024
A092854
Difference between number of composites > and <= mean (=A092802(n)) below 10^n.
Original entry on oeis.org
0, 1, 6, 27, 170, 1178, 8459, 63225, 494428, 3959839, 32485583, 271251228, 2298898781, 19730164908, 171181827045
Offset: 1
a(3)=6 because the count at 10^3 in A092853 is 418 and in A092852 it is 412. 418-412=6.
A092801
Standard deviation (rounded) of composites below 10^n.
Original entry on oeis.org
2, 28, 285, 2873, 28795, 288244, 2883807, 28846206, 288514821, 2885502969, 28857521613, 288593332699, 2886069270370
Offset: 1
a(3) = 285 because this is the computed and rounded sample standard deviation of the composites below 10^3.
- John E. Freund, Modern elementary statistics, 5th ed. (Prentice-Hall, 1979), pp. 42-47
A092871
Number of composites < 10^n.
Original entry on oeis.org
0, 4, 73, 830, 8769, 90406, 921500, 9335419, 94238543, 949152464, 9544947487, 95881945185, 962392087980, 9653934463159, 96795058249196, 970155429577329, 9720761658966073, 97376442842345765, 975260045712259138, 9765942332723655391, 97779180397439081158
Offset: 0
10^3 = 1000. 1000-2 = 998. a(3) = 830 because the 830 composites+168 primes must total 998.
-
Table[10^i-PrimePi[10^i]-2,{i,14}] (* Harvey P. Dale, Oct 01 2011 *) (* Mathematica's implementation of PrimePi does not work for 10^15 or above *)
A091716
Standard deviation (rounded) of primes below 10^n.
Original entry on oeis.org
2, 29, 298, 2962, 29412, 292821, 2921863, 29170821, 291324189, 2910238255, 29078387910, 290589147156, 2904276036695
Offset: 1
a(6) = 292821 (rounded from 292820.634) because this is the computed and rounded sample standard deviation of the 78498 primes below 10^6.
- John E. Freund, Modern elementary statistics, 5th ed. (Prentice-Hall, 1979), pp. 42-47
-
seq(round(Statistics:-StandardDeviation(select(isprime, [$2 .. 10^n-1]))),n=1..7); # Robert Israel, Sep 23 2014
Showing 1-6 of 6 results.
Comments