cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092813 Schmidt's problem sum for r = 3.

Original entry on oeis.org

1, 9, 433, 36729, 3824001, 450954009, 58160561761, 7989733343097, 1149808762915201, 171540347534028009, 26338900959100106433, 4140153621102790276137, 663592912043903970182289, 108127319237119098011204937, 17868369859451104998973346433, 2989001418301890511076878884729
Offset: 0

Views

Author

Eric W. Weisstein, Mar 06 2004

Keywords

Comments

Apparently, the diagonal of 1/((1 - x - y)*(1 - z - t)*(1 - u - w) - x*y*z*t*u*w). - Peter Bala, Jun 30 2023

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^3 Binomial[n+k,k]^3,{k,0,n}],{n, 0, 20}] (*Harvey P. Dale, Apr 26 2011 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^3*binomial(n+k,k)^3); \\ Joerg Arndt, May 11 2013

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^3 * binomial(n+k,k)^3.
a(n) ~ (1+sqrt(2))^(3*(2*n+1))/(2^(9/4)*(Pi*n)^(5/2)*sqrt(3)). - Vaclav Kotesovec, Nov 04 2012

Extensions

Prepended missing a(0)=1, Joerg Arndt, May 11 2013