cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092865 Nonzero elements in Klee's identity Sum[(-1)^k binomial[n,k]binomial[n+k,m],{k,0,n}] == (-1)^n binomial[n,m-n].

Original entry on oeis.org

1, -1, -1, 1, 2, -1, 1, -3, 1, -3, 4, -1, -1, 6, -5, 1, 4, -10, 6, -1, 1, -10, 15, -7, 1, -5, 20, -21, 8, -1, -1, 15, -35, 28, -9, 1, 6, -35, 56, -36, 10, -1, 1, -21, 70, -84, 45, -11, 1, -7, 56, -126, 120, -55, 12, -1, -1, 28, -126, 210, -165, 66, -13, 1, 8, -84, 252, -330, 220, -78, 14, -1, 1, -36, 210, -462, 495
Offset: 0

Views

Author

Eric W. Weisstein, Mar 07 2004

Keywords

Comments

Triangle, with zeros omitted, given by (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 26 2011
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014

Examples

			1;
-1;
-1, 1;
2, -1;
1, -3, 1;
-3, 4, -1;
-1, 6, -5, 1;
4, -10, 6, -1;
Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, ...) begins:
1
0, -1
0, -1, 1
0, 0, 2, -1
0, 0, 1, -3, 1
0, 0, 0, -3, 4, -1
0, 0, 0, -1, 6, -5, 1 ... - _Philippe Deléham_, Dec 26 2011
		

Crossrefs

All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. - N. J. A. Sloane, May 29 2011

Programs

  • Mathematica
    Flatten[Table[(-1)^n Binomial[n, m-n], {m, 0, 20}, {n, Ceiling[m/2], m}]]

Formula

G.f.: 1/(1+y*x+y*x^2). - Philippe Deléham, Feb 08 2012