A092865 Nonzero elements in Klee's identity Sum[(-1)^k binomial[n,k]binomial[n+k,m],{k,0,n}] == (-1)^n binomial[n,m-n].
1, -1, -1, 1, 2, -1, 1, -3, 1, -3, 4, -1, -1, 6, -5, 1, 4, -10, 6, -1, 1, -10, 15, -7, 1, -5, 20, -21, 8, -1, -1, 15, -35, 28, -9, 1, 6, -35, 56, -36, 10, -1, 1, -21, 70, -84, 45, -11, 1, -7, 56, -126, 120, -55, 12, -1, -1, 28, -126, 210, -165, 66, -13, 1, 8, -84, 252, -330, 220, -78, 14, -1, 1, -36, 210, -462, 495
Offset: 0
Examples
1; -1; -1, 1; 2, -1; 1, -3, 1; -3, 4, -1; -1, 6, -5, 1; 4, -10, 6, -1; Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, ...) begins: 1 0, -1 0, -1, 1 0, 0, 2, -1 0, 0, 1, -3, 1 0, 0, 0, -3, 4, -1 0, 0, 0, -1, 6, -5, 1 ... - _Philippe Deléham_, Dec 26 2011
Links
- H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614 [math.PR], 2014
- T. Copeland, Addendum to Elliptic Lie Triad
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Eric Weisstein's World of Mathematics, Klee's Identity
Crossrefs
Programs
-
Mathematica
Flatten[Table[(-1)^n Binomial[n, m-n], {m, 0, 20}, {n, Ceiling[m/2], m}]]
Formula
G.f.: 1/(1+y*x+y*x^2). - Philippe Deléham, Feb 08 2012
Comments