cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092879 Triangle of coefficients of the product of two consecutive Fibonacci polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 7, 2, 1, 7, 16, 13, 3, 1, 9, 29, 40, 22, 3, 1, 11, 46, 91, 86, 34, 4, 1, 13, 67, 174, 239, 166, 50, 4, 1, 15, 92, 297, 541, 553, 296, 70, 5, 1, 17, 121, 468, 1068, 1461, 1163, 496, 95, 5, 1, 19, 154, 695, 1912, 3300, 3544, 2269, 791, 125, 6, 1, 21, 191
Offset: 0

Views

Author

Michael Somos, Mar 10 2004

Keywords

Comments

The Fibonacci polynomials are defined by F(0,x) = 1, F(1,x) = 1 and F(n, x) = F(n-1, x) + x*F(n-2, x).
This is also the reflected triangle of coefficients of the polynomials defined by the recursion: c0=-1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0*(2 - x))*p(x, n - 2) + c0*p(x, n - 3). - Roger L. Bagula, Apr 09 2008

Examples

			Triangle begins;
  1;
  1,1;
  1,3,2;
  1,5,7,2;
  1,7,16,13,3;
  1,9,29,40,22,3;
  ...
F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
		

Crossrefs

Row sums are A001654(n+1).

Programs

  • Maple
    T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
    T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
  • Mathematica
    c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
  • PARI
    T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))

Formula

From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..k} (-1)^(i+k)*binomial(i+2*n-2*k+1, i).
T(n, k) = A035317(2*n-k, k) = A158909(n, n-k.) (End)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) - T(n-3,k-3), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 12 2013

Extensions

Edited and information added by Johannes W. Meijer, Jul 20 2011