A092976 Consider all partitions of n into parts all of which are divisors of n; a(n) = number of distinct values taken by the product of the parts.
1, 1, 2, 2, 3, 2, 7, 2, 5, 4, 10, 2, 19, 2, 13, 13, 9, 2, 37, 2, 29, 17, 19, 2, 61, 6, 22, 10, 39, 2, 247, 2, 17, 25, 28, 25, 127, 2, 31, 29, 97, 2, 450, 2, 59, 82, 37, 2, 217, 8, 146, 37, 69, 2, 271, 37, 133, 41, 46, 2, 1558, 2, 49, 112, 33, 43, 1038, 2, 89, 49, 1105, 2, 469, 2, 58, 211, 99, 49, 1423, 2, 353
Offset: 0
Keywords
Examples
a(10) = 10, the numbers arising are 1,2,4,5,8,10,16,20,25 and 32; e.g. 25 = 5*5, 8 = 2*2*2*1*1*1*1, 32 = 2*2*2*2*2, etc.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): a:= proc(n) local b, l, s; l:= sort([divisors(n)[]]); b:= proc(n,i,p) if n<0 then elif n=0 then s:= s union {p} elif i=0 then else b(n-l[i], i, p*l[i]); b(n, i-1, p) fi end; s:= {}; b(n, nops(l), 1); nops(s) end: seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
a[n_] := Module[{ b, l, s}, l = Divisors[n]; b[m_, i_, p_] := Which[m<0, , m == 0, s = Union[s, {p}], i == 0, , True, b[m - l[[i]], i, p*l[[i]]]; b[m, i-1, p]]; s = {}; b[n, Length[l], 1]; Length[s]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Formula
a(n) = 2 <=> n in { A000040 }. - Alois P. Heinz, Oct 28 2021
Extensions
More terms from Vladeta Jovovic, Aug 06 2005
More terms from Alois P. Heinz, Feb 21 2011
a(0)=1 prepended by Alois P. Heinz, Oct 28 2021
Comments