cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117517 Numbers k such that F(2*k + 1) is prime where F(m) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 14, 21, 23, 41, 65, 68, 179, 215, 216, 224, 254, 284, 285, 1485, 2361, 2693, 4655, 4838, 7215, 12780, 15378, 17999, 18755, 25416, 40919, 52455, 65010, 74045, 100553, 198689, 216890, 295020, 296844, 302355, 465758, 524948, 642803, 818003, 901529, 984360, 1452176
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 26 2006

Keywords

Comments

For F(k) to be prime, with k > 4, it is necessary but not sufficient for k to be prime. Hence after F(4) = 3, every prime F(m) is of the form F(2*k+1) for some k. Every prime divides some Fibonacci number. See also comment to A093062. - Jonathan Vos Post, Apr 29 2006

Examples

			If k=68 then F(2*k + 1) = 19134702400093278081449423917, a prime, so 68 is a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(Fibonacci(2*n+1))]; // Vincenzo Librandi, May 24 2016
  • Mathematica
    Select[Range[0, 5000], PrimeQ[Fibonacci[2 # + 1]] &] (* Vincenzo Librandi, May 24 2016 *)

Formula

a(n) = (A083668(n)-1)/2. - R. J. Mathar, Jul 08 2009
a(n) = (A001605(n+1)-1)/2, n > 1. - Vincenzo Librandi, May 24 2016

Extensions

More terms from Vincenzo Librandi, May 24 2016

A180367 a(n) = Lucas(prime(n+1)) - prime(Lucas(n)), for Lucas numbers beginning at 2.

Original entry on oeis.org

0, 2, 6, 22, 182, 490, 3510, 9240, 63868, 1149468, 3009672, 54017304, 370246314, 969319296, 6643832358, 119218840092, 2139295466336, 5600748260454, 100501350226466, 688846502491240, 1803423556642478, 32361122671978600, 221806434537503870, 3980154972736116440
Offset: 0

Views

Author

Jonathan Vos Post, Aug 31 2010

Keywords

Comments

Commutator of Primes and Lucas numbers. Some subtlety in indexing -- should we start with 0th Lucas number is 2, and 0th prime is 1? As shown here, I use "first" to mean the initial value as shown in P(n) and L(n), even though their indexing differs. This is to A093062 Fibonacci(prime(i))-prime(Fibonacci(i)) as Fibonacci is to Lucas.

Examples

			a(0) = 0 because the 1st prime is 2, and the third Lucas number is A000032(2) = 3; while the 1st Lucas number is 2, and the 2nd prime is 3; with 3-3=0.
a(1) = 2 because the 2nd prime is 3, and A000032(3) = 4; while the 2nd Lucas number is 1, and the first2 prime is 2; with 4-2=2.
a(2) = 6 because the 3rd prime is 5, and the 6th Lucas number (counting "2" as first) is A000032(5) = 11; while the 3rd Lucas number is 3, and the 3rd prime is 5; with 11-5=6.
a(3) = 29 - 7 = 22. a(4) = 199 - 17 = 182.
		

Crossrefs

Programs

Formula

a(n) = L(prime(n+1)) - prime(L(n)) = A000032(A000040(n+1)) - A000040(A000032(n)) = A180363(n+1) - A094894(n).

Extensions

Some indices corrected, 3 values corrected, and formulas signs swapped by R. J. Mathar, Sep 01 2010
Showing 1-2 of 2 results.