A093115 Number of partitions of n^2 into squares not greater than n.
1, 1, 1, 1, 5, 7, 10, 13, 17, 108, 159, 228, 317, 430, 572, 748, 5753, 8125, 11266, 15376, 20672, 27430, 35942, 46575, 59717, 523905, 708028, 946875, 1253880, 1645224, 2140099, 2761318, 3535658, 4494602, 5674753, 7118724, 69766770, 90940578, 117756370
Offset: 0
Keywords
Examples
n=6: 6^2 = 9*2^2 = 8*2^2+4*1^2 = 7*2^2+8*1^2 = 6*2^2+12*1^2 = 5*2^2+16*1^2 = 4*2^2+20*1^2 = 3*2^2+24*1^2 = 2*2^2+28*1^2 = 1*2^2+32*1^2 = 36*1^2, therefore a(6)=10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i)))) end: a:= proc(n) local r; r:= isqrt(n); b(n^2, r-`if`(r^2>n, 1, 0)) end: seq(a(n), n=0..50); # Alois P. Heinz, Apr 15 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n-i^2, i]]]]; a[n_] := (r = Sqrt[n] // Floor; b[n^2, r - If[r^2 > n, 1, 0]]); Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)
Formula
Coefficient of x^(n^2) in the series expansion of Product_{k=1..floor(sqrt(n))} 1/(1 - x^(k^2)). - Vladeta Jovovic, Mar 24 2004
Extensions
More terms from Vladeta Jovovic, Mar 24 2004
Corrected a(0) by Alois P. Heinz, Apr 15 2013