cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093142 Expansion of g.f. (1-5*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 6, 56, 556, 5556, 55556, 555556, 5555556, 55555556, 555555556, 5555555556, 55555555556, 555555555556, 5555555555556, 55555555555556, 555555555555556, 5555555555555556, 55555555555555556, 555555555555555556, 5555555555555555556, 55555555555555555556, 555555555555555555556
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 5*A001045(3n)/3+(-1)^n.
Partial sums of A093143.
A convex combination of 10^n and 1.
In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1, 1+k, 1+11k, 1+111k, ... This is the case for k=5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-5x)/((1-x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{11,-10},{1,6},20] (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    {a(n) = (5*10^n+4)/9} \\ Seiichi Manyama, Sep 14 2019

Formula

a(n) = 5*10^n/9 + 4/9.
a(n) = 10*a(n-1) - 4 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n) = 11*a(n-1) - 10*a(n-2), n > 1. - Harvey P. Dale, Aug 23 2014
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(9*x) + 4)/9.
a(n) = (A062397(n) + A002275(n))/2. (End)