cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093305 Number of binary necklaces of length n with no subsequence 000.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 11, 19, 29, 48, 75, 132, 213, 369, 627, 1083, 1857, 3244, 5619, 9844, 17205, 30229, 53115, 93701, 165313, 292464, 517831, 918578, 1630933, 2900109, 5161443, 9197251, 16402841, 29283026, 52319379, 93558968, 167427845, 299846737, 537358107, 963651447, 1729192433
Offset: 1

Views

Author

Philippe Deléham, Apr 24 2004

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.

Crossrefs

Programs

  • Mathematica
    Table[1/n * Sum[EulerPhi[n/d] (d Sum[Sum[Binomial[j, d - 3 k + 2 j] Binomial[k, j], {j, d - 3 k, k}]/k, {k, d}]), {d, Divisors@ n}], {n, 41}] (* Michael De Vlieger, Dec 28 2016, after Vladimir Joseph Stephan Orlovsky at A001644 *)
  • PARI
    N=66;  x='x+O('x^N);
    B(x)=x*(1+x+x^2);
    A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
    Vec(A)
    /* Joerg Arndt, Aug 06 2012 */

Formula

a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001644(d).
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x*(1+x+x^2). - Joerg Arndt, Aug 06 2012
a(n) ~ d^n / n, where d = (19 + 3*sqrt(33))^(1/3)/3 + 4/(3*(19 + 3*sqrt(33))^(1/3)) + 1/3 = A058265 = 1.8392867552141611325518... - Vaclav Kotesovec, Jul 13 2019