A000358
Number of binary necklaces of length n with no subsequence 00, excluding the necklace "0".
Original entry on oeis.org
1, 2, 2, 3, 3, 5, 5, 8, 10, 15, 19, 31, 41, 64, 94, 143, 211, 329, 493, 766, 1170, 1811, 2787, 4341, 6713, 10462, 16274, 25415, 39651, 62075, 97109, 152288, 238838, 375167, 589527, 927555, 1459961, 2300348, 3626242, 5721045, 9030451, 14264309, 22542397, 35646312, 56393862, 89264835, 141358275
Offset: 1
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 5*x^7 + 8*x^8 + 10*x^9 + ... - _Michael Somos_, Jun 02 2019
Binary necklaces are: 1; 01, 11; 011, 111; 0101, 0111, 1111; 01010, 01011, 01111. - _Michael Somos_, Jun 02 2019
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
- T. Helleseth and A. Kholosha, Bent functions and their connections to combinatorics, in Surveys in Combinatorics 2013, edited by Simon R. Blackburn, Stefanie Gerke, Mark Wildon, Camb. Univ. Press, 2013.
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, and Marko Petkovsek, Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, and Marko Petkovsek, Vertex and Edge Orbits of Fibonacci and Lucas Cubes, Ann. Comb. 20 (2016), 209-229.
- M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard, and B. M. McCoy, Integrability vs non-integrability: Hard hexagons and hard squares compared, arXiv preprint 1406.5566 [math-ph], 2014.
- M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard, and B. M. McCoy, Integrability versus non-integrability: Hard hexagons and hard squares compared, J. Phys. A: Math. Theor. 47 (2014) 445001 (53pp.).
- Daryl DeFord, Enumerating distinct chessboard tilings, Fibonacci Quart. 52 (2014), 102-116; see formula (5.3) in Theorem 5.2, p. 111.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- Benjamin Hackl and Helmut Prodinger, The Necklace Process: A Generating Function Approach, arXiv:1801.09934 [math.PR], 2018. [The paper mentions this sequence, but the authors mean sequence A032190(n) = a(n) - 1.]
- Benjamin Hackl and Helmut Prodinger, The Necklace Process: A Generating Function Approach, Statistics and Probability Letters 142 (2018), 57-61. [The paper mentions this sequence, but the authors mean sequence A032190(n) = a(n) - 1.]
- P. Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, J. Integer Sequences 19 (2016), #16.8.2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 119
- Tom Roby, Dynamical algebraic combinatorics and homomesy: An action-packed introduction, AlCoVE: an Algebraic Combinatorics Virtual Expedition (2020).
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations, arXiv:1806.10933 [cond-mat.quant-gas], 2018.
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
- Index entries for sequences related to necklaces
-
A000358 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + phi(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end;
with(combstruct); spec := {A=Union(zero,Cycle(one),Cycle(Prod(zero,Sequence(one,card>0)))),one=Atom,zero=Atom}; seq(count([A,spec,unlabeled],size=i),i=1..30);
-
nn=48;Drop[Map[Total,Transpose[Map[PadRight[#,nn]&,Table[ CoefficientList[ Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i+x^(2i),{i,1,n}],{x,0,nn}],x],{n,0,nn}]]]],1] (* Geoffrey Critzer, Feb 01 2014 *)
max = 50; B[x_] := x*(1+x); A = Sum[EulerPhi[k]/k*Log[1/(1-B[x^k])], {k, 1, max}]/x + O[x]^max; CoefficientList[A, x] (* Jean-François Alcover, Feb 08 2016, after Joerg Arndt *)
Table[1/n * Sum[EulerPhi[n/d] Total@ Map[Fibonacci, d + # & /@ {-1, 1}], {d, Divisors@ n}], {n, 47}] (* Michael De Vlieger, Dec 28 2016 *)
a[ n_] := If[ n < 1, 0, DivisorSum[n, EulerPhi[n/#] LucasL[#] &]/n]; (* Michael Somos, Jun 02 2019 *)
-
N=66; x='x+O('x^N);
B(x)=x*(1+x);
A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
Vec(A)
/* Joerg Arndt, Aug 06 2012 */
-
{a(n) = if( n<1, 0, sumdiv(n, d, eulerphi(n/d) * (fibonacci(d+1) + fibonacci(d-1)))/n)}; /* Michael Somos, Jun 02 2019 */
-
from sympy import totient, lucas, divisors
def A000358(n): return (n&1^1)+sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n,generator=True))//n # Chai Wah Wu, Sep 23 2023
A280218
Number of binary necklaces of length n with no subsequence 0000.
Original entry on oeis.org
1, 2, 3, 5, 6, 11, 15, 27, 43, 75, 125, 228, 391, 707, 1262, 2285, 4119, 7525, 13691, 25111, 46033, 84740, 156123, 288529, 533670, 989305, 1835983, 3412885, 6351031, 11834623, 22074821, 41222028, 77048131, 144148859, 269913278, 505826391, 948652695, 1780473001, 3343960175, 6284560319, 11818395345
Offset: 1
a(5)=6 because we have six binary cyclic sequences of length 5 that avoid four consecutive zeros: 00011, 00101, 00111, 01101, 01111, 11111.
- Alois P. Heinz, Table of n, a(n) for n = 1..3521
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 57.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
-
Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, d}], {d, Divisors@ n}], {n, 41}] (* Michael De Vlieger, Dec 30 2016 *)
-
N=44; x='x+O('x^N);
B(x)=x*(1+x+x^2+x^3);
Vec(sum(k=1, N, eulerphi(k)/k * log(1/(1-B(x^k))))) \\ Joerg Arndt, Dec 29 2016
A351360
Number of binary necklaces with n beads and at least three consecutive black beads.
Original entry on oeis.org
0, 0, 1, 2, 3, 5, 9, 17, 31, 60, 113, 220, 419, 813, 1565, 3033, 5855, 11358, 21977, 42644, 82675, 160517, 311609, 605551, 1176871, 2288964, 4453237, 8669002, 16881859, 32892459, 64112225, 125022545, 243898335, 476011102, 929387453, 1815322932
Offset: 1
A274017
Number of n-bead binary necklaces (no turning over allowed) that avoid the subsequence 110.
Original entry on oeis.org
1, 2, 3, 3, 4, 4, 6, 6, 9, 11, 16, 20, 32, 42, 65, 95, 144, 212, 330, 494, 767, 1171, 1812, 2788, 4342, 6714, 10463, 16275, 25416, 39652, 62076, 97110, 152289, 238839, 375168, 589528, 927556, 1459962, 2300349, 3626243, 5721046, 9030452, 14264310, 22542398, 35646313, 56393863, 89264836, 141358276, 223959712
Offset: 0
The following necklace
1-1
/ \
0 0
| |
1 1
\ /
0-0
contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented.
a(8) = 9: 00000000, 00000001, 00000101, 00001001, 00010001, 00010101, 00100101, 01010101, 11111111.
a(9) = 11: 000000000, 000000001, 000000101, 000001001, 000010001, 000010101, 000100101, 000101001, 001001001, 001010101, 111111111.
A322057
Array read by upwards antidiagonals: T(i,n) is the number of binary necklaces of length n that avoid 00...0 (i 0's).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 3, 4, 3, 1, 1, 2, 3, 5, 5, 5, 1, 1, 2, 3, 5, 6, 9, 5, 1, 1, 2, 3, 5, 7, 11, 11, 8, 1, 1, 2, 3, 5, 7, 12, 15, 19, 10, 1, 1, 2, 3, 5, 7, 13, 17, 27, 29, 15, 1, 1, 2, 3, 5, 7, 13, 18, 31, 43, 48, 19, 1
Offset: 1
The first few antidiagonals are:
1;
1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 2, 3, 3, 1;
1, 2, 3, 4, 3, 1;
1, 2, 3, 5, 5, 5, 1;
1, 2, 3, 5, 6, 9, 5, 1;
1, 2, 3, 5, 7, 11, 11, 8, 1;
1, 2, 3, 5, 7, 12, 15, 19, 10, 1;
...
From _Petros Hadjicostas_, Jan 16 2019: (Start)
In the above triangle (first few antidiagonals, read upwards), the j-th row corresponds to T(j,1), T(j-1,2), T(j-2,3), ..., T(1,j).
This, however, is not the j-th row of the square array (see the scanned page above).
For example, the sixth row of the square array is as follows:
T(6,1) = 1, T(6,2) = 2, T(6,3) = 3, T(6,4) = 5, T(6, 5) = 7, T(6, 6) = 13, ...
To generate these numbers, we use T(6, n) = (1/n)*Sum_{d|n} phi(n/d)*L(6,d), where
L(6,1) = 1, L(6,2) = 3, L(6,3) = 7, L(6,4) = 15, L(6,5) = 31, L(6,6) = 63, ...
See the sixth row of A125127. See also the Sage program below by Freddy Barrera.
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 520.
- Freddy Barrera, Rows n = 1..100 of triangle, flattened.
- Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press, 2015, annotated scan of page 520.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
-
T(i,n) = {my(p=1/(1 - x*(1 - x^i)/(1 - x))); polcoef(sum(d=1, n, eulerphi(d)*log(subst(p + O(x*x^(n\d)), x, x^d))/d), n)} \\ Andrew Howroyd, Jan 08 2024
-
# uses the L method from A125127
def T(i, n):
return sum(euler_phi(n//d)*L(i, d) for d in n.divisors()) // n
[T(i, n) for d in (1..12) for i, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 15 2019
A280303
Number of binary necklaces of length n with no subsequence 00000.
Original entry on oeis.org
1, 2, 3, 5, 7, 12, 17, 31, 51, 91, 155, 287, 505, 930, 1695, 3129, 5759, 10724, 19913, 37239, 69643, 130745, 245715, 463099, 873705, 1651838, 3126707, 5927817, 11251031, 21382558, 40679233, 77475673, 147694719, 281822847, 538213671, 1028714071, 1967728553
Offset: 1
a(5)=7 because we have seven binary cyclic sequences (necklaces) of length 5 that avoid five consecutive zeros: 00001, 00011, 00101, 00111, 01101, 01111, 11111.
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- Petros Hadjicostas, Proof of the formula for the generating function from the formula for a(n)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
A063686
Triangular array: T(n,k) is the number of binary necklaces (no turning over) of length n whose longest run of 1's has length k. Table begins at n=0, k=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 4, 2, 1, 1, 1, 1, 4, 6, 4, 2, 1, 1, 1, 1, 7, 11, 8, 4, 2, 1, 1, 1, 1, 9, 19, 14, 8, 4, 2, 1, 1, 1, 1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1, 1, 18, 56, 50, 30, 16, 8, 4, 2, 1, 1, 1, 1, 30, 101, 96, 59, 32, 16, 8, 4, 2, 1, 1, 1
Offset: 0
Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 22 2001
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 2, 1, 1, 1;
1, 2, 2, 1, 1, 1;
1, 4, 4, 2, 1, 1, 1;
1, 4, 6, 4, 2, 1, 1, 1;
1, 7, 11, 8, 4, 2, 1, 1, 1;
1, 9, 19, 14, 8, 4, 2, 1, 1, 1;
1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1;
...
-
\\ here R(n) is A048887 transposed
R(n)={Mat(vector(n, k, Col((1-x)/(1-2*x+x^(k+1)) - 1 + O(x*x^n))))}
S(M)={matrix(#M-1, #M-1, n, k, if(kAndrew Howroyd, Oct 15 2017
A320286
Expansion of Product_{k>=1} 1/(1 - x^k - x^(2*k) - x^(3*k)).
Original entry on oeis.org
1, 1, 3, 6, 13, 24, 51, 93, 184, 343, 654, 1211, 2286, 4217, 7865, 14521, 26912, 49600, 91669, 168800, 311305, 573058, 1055576, 1942437, 3575840, 6578762, 12106121, 22270404, 40972700, 75367724, 138644224, 255020102, 469095029, 862827347, 1587061299, 2919111935, 5369224903
Offset: 0
-
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/( &*[(1-x^k-x^(2*k)-x^(3*k)): k in [1..m+2]]))); // G. C. Greubel, Oct 24 2018
-
seq(coeff(series(mul(((1-x^k-x^(2*k)-x^(3*k)))^(-1),k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
-
nmax = 36; CoefficientList[Series[Product[1/(1 - x^k - x^(2 k) - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 36; CoefficientList[Series[Exp[-Sum[Sum[EulerPhi[j] Log[1 - x^(j k) (1 + x^(j k) + x^(2 j k))]/(j k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
-
m=40; x='x+O('x^m); Vec(1/prod(k=1, m+2, (1-x^k-x^(2*k)-x^(3*k)))) \\ G. C. Greubel, Oct 24 2018
Showing 1-8 of 8 results.
Comments