cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238813 Numerators of the coefficients of Euler-Ramanujan’s harmonic number expansion into negative powers of a triangular number.

Original entry on oeis.org

1, -1, 1, -1, 1, -191, 29, -2833, 140051, -6525613, 38899057, -532493977, 4732769, -12945933911, 168070910246641, -4176262284636781, 345687837634435, -26305470121572878741, 1747464708706073081, -2811598717039332137041, 166748874686794522517053
Offset: 1

Views

Author

Stanislav Sykora, Mar 05 2014

Keywords

Comments

H_k = Sum_{i=1..k} 1/i = log(2*m)/2 + gamma + Sum_{n>=1} R_n/m^n, where m = k(k+1)/2 is the k-th triangular number. This sequence lists the numerators of R_n (denominators are listed in A093334).

Examples

			R_9 = 140051/17459442 = a(9)/A093334(9).
		

Crossrefs

Cf. A000217 (triangular numbers), A001620 (gamma), A093334 (denominators).
Cf. A212196.

Programs

  • Maple
    a := n -> - numer(add(binomial(n,k)*bernoulli(n+k), k=0..n)/2^n);
    seq(a(n), n=1..21); # Peter Luschny, Aug 13 2017
  • Mathematica
    Table[Numerator[-Sum[Binomial[n,k]*BernoulliB[n+k]/2^n,{k,0,n}]], {n,1,25}] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    Rn(nmax)= {local(n,k,v,R);v=vector(nmax);x=1/2;
    for(n=1,nmax,R=1;for(k=1,n,R+=(-4)^k*binomial(n,k)*eval(bernpol(2*k)));
    R*=(-1)^(n-1)/(2*n*8^n);v[n]=R);return (v);}
    // returns an array v[1..nmax] of the rational coefficients

Formula

R(n) = (-1)^(n-1)/(2*n*8^n)*(1 + Sum_{i=1..n} (-4)^i*binomial(n,i)* B_2i(1/2)), a(n) = denominator(R_n), and B_2i(x) is the (2i)-th Bernoulli polynomial.
From Peter Luschny, Aug 13 2017: (Start)
a(n) = -numerator(A212196(n)/2^n), A212196 the Bernoulli median numbers.
a(n) = -numerator((Sum_{k=0..n} binomial(n,k)*bernoulli(n+k))/2^n).
a(n) = -numerator(I(n)/2^n) with I(n) = (-1)^n*Integral_{x=0..1} S(n,x)^2 and S(n,x) = Sum_{k=0..n} Stirling2(n,k)*k!*(-x)^k. (End)

A331777 Numerators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 1, 0, -1, 1, -1, -43, 1831, 949, -137309, -85511, 3404045159, 777985057, -21024051077, -2192231411, 467347169033357, 10187765700589, -11741590582705819219, -3086703970985605357, 169597995722575162268081, 19606186988235984155519, -62715098968866173387571821
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Denominators are in A331778.

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

Sign of a(7) corrected and more terms from Vaclav Kotesovec, Feb 10 2020

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020
Showing 1-3 of 3 results.