cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A093334 Denominators of the coefficients of Euler-Ramanujan's harmonic number expansion into negative powers of a triangular number.

Original entry on oeis.org

12, 120, 630, 1680, 2310, 360360, 30030, 1166880, 17459442, 193993800, 223092870, 486748080, 579462, 180970440, 231415950150, 493687360320, 3085546002, 15714504285480, 62359143990, 5382578744400, 15465127383342, 162015620206440, 173062139765970, 6139943741262240, 77311562676150
Offset: 1

Views

Author

Kent Wigstrom (jijiw(AT)speedsurf.pacific.net.ph), Apr 25 2004

Keywords

Comments

Previous name was: Coefficients in Ramanujan's Euler-MacLaurin asymptotic expansion.
Explicitly, H_k = Sum_{i=1..k} 1/i = log(2*m)/2 + gamma + Sum_{n>=1} R_n/m^n, where m = k(k+1)/2 is the k-th triangular number. This sequence lists the denominators of R_n (numerators are listed in A238813). A few starting numerical terms were given by Euler and Ramanujan; the form of the general term and the behavior of the series were determined by Villarino. - Stanislav Sykora, Mar 05 2014

Examples

			R_9 = 140051/17459442 = A238813(9)/a(9).
		

Crossrefs

Cf. A000217 (triangular numbers), A001620 (gamma), A238813 (numerators).

Programs

  • Mathematica
    Table[Denominator[((-1)^(n-1)/(2*n*8^n))*(1 + Sum[(-4)^j*Binomial[n,j]* BernoulliB[2*j,1/2], {j,1,n}])], {n,1,30}] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    Rn(nmax)= {local(n,k,v,R);v=vector(nmax);x=1/2;
    for(n=1,nmax,R=1;for(k=1,n,R+=(-4)^k*binomial(n,k)*eval(bernpol(2*k)));
    R*=(-1)^(n-1)/(2*n*8^n);v[n]=R);(apply(x->denominator(x), v));}
    // Stanislav Sykora, Mar 05 2014; improved by Michel Marcus, Aug 30 2018

Formula

R_n = ((-1)^(n-1)/(2*n*8^n))*(1 + Sum_{i=1..n} (-4)^i*binomial(n,i)*B_2i(1/2));
a(n) = denominator(R_n), and B_2i(x) is the (2i)-th Bernoulli polynomial. - Stanislav Sykora, Mar 05 2014

Extensions

Title changed, terms a(5) onward added by Stanislav Sykora, Mar 05 2014

A331777 Numerators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 1, 0, -1, 1, -1, -43, 1831, 949, -137309, -85511, 3404045159, 777985057, -21024051077, -2192231411, 467347169033357, 10187765700589, -11741590582705819219, -3086703970985605357, 169597995722575162268081, 19606186988235984155519, -62715098968866173387571821
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Denominators are in A331778.

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

Sign of a(7) corrected and more terms from Vaclav Kotesovec, Feb 10 2020

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020

A308402 Denominators of the sequence of rational numbers Rn+ related to Bernoulli numbers.

Original entry on oeis.org

1, 3, 30, 105, 210, 231, 30030, 2145, 72930, 969969, 9699690, 10140585, 20281170, 22287, 6463230, 7713865005, 15427730010, 90751353, 436514007930, 1641030105, 134564468610, 368217318651, 3682173186510, 3762220429695, 127915494609630, 1546231253523, 819502564367190, 54496920530418135
Offset: 0

Views

Author

Michel Marcus, May 25 2019

Keywords

Comments

The sequence Rn+ is defined by Rn+ = psi(binomial(x+2, 2)^n) where the linear form psi is defined by psi(x^n) = Bernoulli(n).
The companion sequence Rn- is defined by Rn+ = psi(binomial(x+1, 2)^n), and differs at n=1 with value -1/6 instead of 1/3.

Examples

			The sequence Rn+ begins 1, 1/3, 1/30, -1/105, 1/210, -1/231, 191/30030, -29/2145, 2833/72930, ...
		

Crossrefs

Cf. A238813 (numerators of Rn+, for n >0, up to sign).

Programs

  • PARI
    a(n) = my(p=binomial(x+2, 2)^n); denominator(sum(k=0, poldegree(p), bernfrac(k)*polcoef(p, k, x)));
Showing 1-4 of 4 results.