cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020

A331943 a(n) = n^2 + 1 - ceiling((n + 2)/3).

Original entry on oeis.org

1, 3, 8, 15, 23, 34, 47, 61, 78, 97, 117, 140, 165, 191, 220, 251, 283, 318, 355, 393, 434, 477, 521, 568, 617, 667, 720, 775, 831, 890, 951, 1013, 1078, 1145, 1213, 1284, 1357, 1431, 1508, 1587, 1667, 1750, 1835, 1921, 2010, 2101, 2193, 2288, 2385, 2483, 2584
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

Related to expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k as given by A331777/A331778.
The agreement with the results of the PARI code needs an explanation. All numerators corresponding to the computed denominators are 1.

Crossrefs

Programs

  • Mathematica
    Table[n^2+1-Ceiling[(n+2)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,3,8,15,23},60] (* Harvey P. Dale, Aug 30 2021 *)
  • PARI
    H(n)=sum(j=1,n,1/j);
    A(k)=exp(2*(H(k)-Euler))/k^2;
    for(k=1,51,r=(1/k)*(A(k)-1);print1(denominator(bestappr(r,k*k)),", "))

Formula

From Colin Barker, Feb 10 2020: (Start)
G.f.: x*(1 + x + 3*x^2 + x^3) / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: (1/9)*(3*exp(x)*x*(2 + 3*x) + 2*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Feb 14 2020
Showing 1-2 of 2 results.