cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093381 Expansion of (1 - 2*x - 3*x^2 - 4*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).

Original entry on oeis.org

1, 8, 42, 186, 766, 3058, 12062, 47426, 186606, 735858, 2909182, 11528866, 45781646, 182104658, 725311902, 2891845506, 11539011886, 46070609458, 184025468222, 735329653346, 2938999333326, 11749034250258, 46975237266142
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Second binomial transform of A093380.

Crossrefs

Cf. A033484.

Programs

  • Magma
    [4/3-5*2^n+2*3^n+8*4^n/3: n in [0..30]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    CoefficientList[Series[(1-2x-3x^2-4x^3)/((1-x)(1-2x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{10,-35,50,-24},{1,8,42,186},30] (* Harvey P. Dale, May 29 2013 *)

Formula

a(n) = 4/3 - 5*2^n + 2*3^n + 8*4^n/3;
a(n) = 2*A000244(n) - 5*A000079(n) + 4*A001045(2n+1).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4), n > 3. - Harvey P. Dale, May 29 2013

A173197 a(0)=1, a(n)= 2+2^n/6+4*(-1)^n/3, n>0.

Original entry on oeis.org

1, 1, 4, 2, 6, 6, 14, 22, 46, 86, 174, 342, 686, 1366, 2734, 5462, 10926, 21846, 43694, 87382, 174766, 349526, 699054, 1398102, 2796206, 5592406, 11184814, 22369622, 44739246, 89478486, 178956974, 357913942, 715827886, 1431655766, 2863311534, 5726623062, 11453246126, 22906492246, 45812984494, 91625968982, 183251937966, 366503875926, 733007751854
Offset: 0

Views

Author

Paul Curtz, Feb 12 2010

Keywords

Comments

Linked to Jacobsthal numbers (expansion of tan(x), a.k.a. Zag numbers) A000182=1,2,16,272,...: a(n+1)-2a(n) = -(-1)^n*(A000182(n) mod 10) = (-1,2,-6,2,-6,2,-6,...).
Cf. A173114, related to Euler (or secant, or Zig) numbers, A000364. a(n+1)+A010684=A001045.
First differences: 0,3,-2,4,0,8,8,24,... = 0,A154879 (third differences of A001045).
Main diagonal: A003945; first upper diagonal: -A171449; second: 4*A011782.

Formula

a(n) = A093380(n+4), n>3.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3), n>3.
G.f.: 1-x*(-1-2*x+7*x^2)/((x-1)*(2*x-1)*(1+x)).
a(2n+2)+a(2n+3)=6*A047689.
a(2n)-a(2n-2) = 3,1,2,4,8,16,... = 3,A000079.
Showing 1-2 of 2 results.