cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093456 Product of composite numbers among next n numbers.

Original entry on oeis.org

1, 1, 24, 720, 2520, 120960, 259459200, 1357171200, 4929724800, 42608389824000, 11912739135897600, 59907396092544000, 20458385028297216000, 7926428532945162240000, 4693751193479184764928000, 328774885640356760904499200000, 12797917159224592605450240000
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2004

Keywords

Comments

Conjecture: There are finitely many numbers such that a(n) is not == 0 (mod a(n-1)). (Also mentioned in A093455.)
Product of all composite numbers between n*(n-1)/2+1 and n*(n+1)/2 (including boundaries). - Stefan Steinerberger, Apr 02 2006

Examples

			Sequence begins:
   1:             a(1) = 1.
   2  3:          a(2) = 1.
   4  5  6:       a(3) = 4*6 = 24.
   7  8  9 10:    a(4) = 8*9*10 = 720.
  11 12 13 14 15: a(5) = 12*14*15 = 2520.
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[a := Range[n*(n - 1)/2 + 1, n*(n + 1)/2]; b := Select[a, Not[PrimeQ[ # ]] &]; Product[b[[i]], {i, 1, Length[b]}], {n, 1, 20}] (* Stefan Steinerberger, Apr 02 2006 *)
    Module[{nn=20},Times@@Select[#,CompositeQ]&/@TakeList[Range[(nn(nn+1))/2],Range[nn]]] (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = A057003(n)/A093457(n). - Michel Marcus, Jan 14 2025

Extensions

More terms from Stefan Steinerberger, Apr 02 2006

A093457 Product of primes in the range [T(n-1) + 1, T(n - 1) + n], where T(n) is the n-th triangular number.

Original entry on oeis.org

1, 6, 5, 7, 143, 323, 23, 899, 65231, 2491, 3599, 347261, 583573, 1009091, 1317919, 16637, 428448457, 4273697, 5605027, 1445140189, 2445956099, 3368562317, 4927316309, 6454166203, 9473323417, 13508676341, 17347785757, 8989229423381
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2004

Keywords

Examples

			a(5) = 11*13 = 143.
		

Crossrefs

Programs

  • Mathematica
    Do[k = 1; Do[If[PrimeQ[i], k = k*i], {i, Binomial[n, 2] + 1, Binomial[n, 2] + n}]; Print[k], {n, 1, 30}] (* Ryan Propper, Jun 22 2005 *)
    Join[{1,6},Table[With[{t=(n(n+1))/2},Times@@Select[Range[t+1,t+n],PrimeQ]],{n,2,30}]]  (* Harvey P. Dale, Jan 18 2025 *)

Extensions

More terms from Ryan Propper, Jun 22 2005
Showing 1-2 of 2 results.