A093500 a(n) = (15*n^2 + 5*n + 2)/2.
11, 36, 76, 131, 201, 286, 386, 501, 631, 776, 936, 1111, 1301, 1506, 1726, 1961, 2211, 2476, 2756, 3051, 3361, 3686, 4026, 4381, 4751, 5136, 5536, 5951, 6381, 6826, 7286, 7761, 8251, 8756, 9276, 9811, 10361, 10926, 11506, 12101, 12711, 13336, 13976, 14631, 15301
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(15*n^2+5*n+2)/2: n in [1..50]]; // Vincenzo Librandi, Aug 16 2011
-
Mathematica
Table[(15n^2+5n+2)/2,{n,50}] (* Harvey P. Dale, Jun 28 2014 *)
-
PARI
a(n)=(15*n^2+5*n+2)/2 \\ Charles R Greathouse IV, Jun 16 2017
Formula
From Colin Barker, Apr 30 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (6*x^2 + 8*x + 1)/(1-x)^3. (End)
E.g.f.: exp(x)*(1 + 10*x + 15*x^2/2). - Elmo R. Oliveira, Oct 21 2024
Extensions
New definition from Ralf Stephan, Dec 01 2004
Name corrected by Arkadiusz Wesolowski, Aug 15 2011
Comments