cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093509 Multiples of 5 or 6.

Original entry on oeis.org

0, 5, 6, 10, 12, 15, 18, 20, 24, 25, 30, 35, 36, 40, 42, 45, 48, 50, 54, 55, 60, 65, 66, 70, 72, 75, 78, 80, 84, 85, 90, 95, 96, 100, 102, 105, 108, 110, 114, 115, 120, 125, 126, 130, 132, 135, 138, 140, 144, 145, 150, 155, 156, 160, 162, 165, 168, 170, 174, 175
Offset: 1

Views

Author

Ralf Stephan, May 22 2004

Keywords

Comments

Numbers that are congruent to {0, 5, 6, 10, 12, 15, 18, 20, 24, 25} mod 30.
Also without 0: numbers n such that cos(Pi*x/n)+cos(Pi*y/n)=1/2 has integer solutions (x,y).
Numbers n such that there exists a nontrivial configuration to an n-1 X n-1 Lights Out game from the all-off state to the all-off state.

Examples

			102 = 6*17 (a multiple of 6), so 102 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [5*Floor((n+9)/10)*(-1)^n/2+5*Floor((n+9)/10)/2-n*(-1)^n/4-(-1)^n+11*n/4-4 : n in [1..50]]; // Wesley Ivan Hurt, May 01 2016
    
  • Maple
    A093509:=n->5*floor((n+9)/10)*(-1)^n/2+5*floor((n+9)/10)/2-n*(-1)^n/4-(-1)^n+11*n/4-4: seq(A093509(n), n=1..80); # Wesley Ivan Hurt, May 01 2016
  • Mathematica
    Join[{0}, lim = 49; TakeWhile[Union@Flatten[# Range@lim & /@ {5, 6}], # < 5 lim &]] (* Michael De Vlieger, Mar 06 2016 *)
    Union[Range[0,50]*6, Range[0,60]*5] (* Giovanni Resta, May 05 2016 *)
    LinearRecurrence[{2,-2,2,-2,2,-2,2,-2,2,-1},{0,5,6,10,12,15,18,20,24,25},60] (* Harvey P. Dale, Jul 15 2023 *)
  • PARI
    isok(n) = !(n%5) || !(n%6);
    
  • Sage
    def isA093509(n): return n % 5 == 0 or n % 6 == 0
    def A093509List(upto): return [n for n in range(upto + 1) if isA093509(n)]
    print(A093509List(175))  # Peter Luschny, Apr 10 2022

Formula

G.f.: x^2*(5-4*x+8*x^2-6*x^3+9*x^4-6*x^5+8*x^6-4*x^7+5*x^8) / ((x^4+x^3+x^2+x+1) * ( x^4-x^3+x^2-x+1) * (x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009; corrected by R. J. Mathar, Sep 16 2009
From Wesley Ivan Hurt, May 01 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-2*a(n-6)+2*a(n-7)-2*a(n-8)+2*a(n-9)-a(n-10) for n>10.
a(n) = 5*floor((n+9)/10)*(-1)^n/2 + 5*floor((n+9)/10)/2 - n*(-1)^n/4 - (-1)^n + 11*n/4 - 4. (End)