A093540 Decimal expansion of Sum_{n >= 1} 1/L(n), where L(n) is the n-th Lucas number.
1, 9, 6, 2, 8, 5, 8, 1, 7, 3, 2, 0, 9, 6, 4, 5, 7, 8, 2, 8, 6, 8, 7, 9, 5, 1, 2, 8, 6, 7, 5, 1, 8, 3, 5, 2, 6, 6, 4, 9, 5, 9, 3, 0, 1, 7, 1, 6, 2, 2, 1, 9, 4, 2, 1, 1, 3, 0, 7, 1, 5, 2, 4, 0, 4, 1, 7, 0, 6, 1, 6, 0, 7, 5, 4, 6, 4, 6, 0, 3, 7, 7, 9, 7, 9, 0, 4, 1, 8, 9, 9, 0, 8, 4, 0, 3, 4, 6, 9, 6, 2, 2
Offset: 1
Examples
1.96285817320964578286879512867518352664959301716221...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Vol. 308, No. 19 (1989), pp. 539-541.
- Paul S. Bruckman, Problem B-603, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 25, No. 3 (1987), p. 280; Lucas Analogue, Solution to Problem B-603 by C. Georghiou, ibid., Vol. 26, No. 3 (1988), p. 282.
- A. F. Horadam, Elliptic functions and Lambert series in the summation of reciprocals in certain recurrence-generated sequences, The Fibonacci Quarterly, Vol. 26, No. 2 (May-1988), pp. 98-114.
- Yohei Tachiya, Irrationality of certain Lambert series, Tokyo Journal of Mathematics, Vol. 27, No. 1 (2004), pp. 75-85.
Programs
-
Mathematica
RealDigits[Sum[1/LucasL[n],{n,2000}],10,120][[1]] (* Harvey P. Dale, Jan 15 2012 *)
-
PARI
suminf(n=1,1/(fibonacci(n-1)+fibonacci(n+1))) \\ Charles R Greathouse IV, Jan 15 2012
Formula
From Amiram Eldar, Oct 04 2020: (Start)
Equals Sum_{k>=0} 1/(phi^(2*k+1) - (-1)^k), where phi is the golden ratio (A001622).
Equals 7/3 - 10 * Sum_{k>=1} 1/(L(2*k-1)*L(2*k+1)*L(2*k+2)) (Bruckman, 1987). - Amiram Eldar, Jan 27 2022
Comments