cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

Original entry on oeis.org

3, 3, 5, 9, 8, 8, 5, 6, 6, 6, 2, 4, 3, 1, 7, 7, 5, 5, 3, 1, 7, 2, 0, 1, 1, 3, 0, 2, 9, 1, 8, 9, 2, 7, 1, 7, 9, 6, 8, 8, 9, 0, 5, 1, 3, 3, 7, 3, 1, 9, 6, 8, 4, 8, 6, 4, 9, 5, 5, 5, 3, 8, 1, 5, 3, 2, 5, 1, 3, 0, 3, 1, 8, 9, 9, 6, 6, 8, 3, 3, 8, 3, 6, 1, 5, 4, 1, 6, 2, 1, 6, 4, 5, 6, 7, 9, 0, 0, 8, 7, 2, 9, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

André-Jeannin proved that this constant is irrational.
This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - Amiram Eldar, Oct 30 2020

Examples

			3.35988566624317755317201130291892717968890513373...
		

References

  • Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

Crossrefs

Programs

  • Maple
    Digits := 120: c := Pi/2 + I*arccsch(2):
    Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):
    evalf(Jeannin(1000)); # Peter Luschny, Nov 15 2023
  • Mathematica
    digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Apr 09 2013 *)
    First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* Vladimir Reshetnikov, Nov 18 2015 *)
  • PARI
    /* Fast computation without splitting into even and odd indices, see the Arndt reference */
    lambert2(x, a, S)=
    {
    /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)
       computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )
       As series in x correct up to order S^2.
       We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */
        return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );
    }
    inv_fib_sum(p=1, q=1, S)=
    {
    /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)
       computed using generalized Lambert series.
       Must have p^2+4*q > 0 */
        my(al,be);
        \\ Note: the q here is -q in the Horadam paper.
        \\ The following numerical examples are for p=q=1:
        al=1/2*(p+sqrt(p^2+4*q));  \\ == +1.6180339887498...
        be=1/2*(p-sqrt(p^2+4*q));  \\ == -0.6180339887498...
        return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...
    }
    default(realprecision,100);
    S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */
    inv_fib_sum(1,1,S) /* 3.3598856... */ /* Joerg Arndt, Jan 30 2011 */
    
  • PARI
    suminf(k=1, 1/(fibonacci(k))) \\ Michel Marcus, Feb 19 2019
    
  • Sage
    m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # G. C. Greubel, Feb 20 2019

Formula

Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - Peter Bala, Nov 30 2013
From Amiram Eldar, Oct 04 2020: (Start)
Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).
Equals A153386 + A153387. (End)
From Gleb Koloskov, Sep 14 2021: (Start)
Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),
where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390),
c2 = 2*arctan(2)+log(5) = 2*A105199+A016628,
phi = (1+sqrt(5))/2 = A001622,
f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)
From Amiram Eldar, Jan 27 2022: (Start)
Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).
Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).
Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End)
Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - Peter Luschny, Nov 15 2023
Equals lim_{n->oo} A203006(n)/A003266(n) (Z.W. M. Trzaska, 1996). - Raul Prisacariu, Sep 04 2024

A153415 Decimal expansion of Sum_{n>=1} 1/A000032(2*n).

Original entry on oeis.org

5, 6, 6, 1, 7, 7, 6, 7, 5, 8, 1, 1, 3, 8, 4, 5, 5, 0, 2, 7, 5, 9, 2, 9, 3, 2, 1, 2, 1, 2, 0, 6, 2, 0, 0, 3, 7, 3, 6, 1, 4, 4, 1, 9, 7, 8, 6, 5, 9, 0, 5, 5, 7, 0, 4, 9, 2, 3, 4, 4, 4, 1, 3, 2, 5, 4, 5, 7, 5, 5, 5, 4, 5, 3, 0, 2, 0, 8, 6, 8, 5, 6, 1, 4, 8, 5, 5, 6, 7, 8, 4, 2, 1, 8, 1, 8, 3, 2, 6, 6, 4, 6, 1, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Comments

From Peter Bala, Oct 15 2019: (Start)
c = (1/4)*(theta_3( (3-sqrt(5))/2 )^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A056854.
Series acceleration formulas (L(n) = A000032(n)):
c = 1 - 5*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 - 5) ).
c = (1/6) + 15*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 + 5) ).
c = (11/16) - 10*Sum_{n >= 1} (L(2*n)^2 - 10)/( L(2*n)*(L(2*n)^2 - 5)*(L(2*n)^2 - 20) ). (End)
Compare with Sum_{n >= 1} 1/(L(2*n) - sqrt(5)) = phi and Sum_{n >= 1} 1/(L(2*n) + sqrt(5)) = 2 - phi, where phi = (sqrt(5) + 1)/2. - Peter Bala, Nov 23 2019
This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			0.56617767581138455027...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

Programs

A304092 Number of Lucas numbers (A000032: 2, 1, 3, 4, 7, 11, ...) dividing n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 2, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 4, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A102460(d).
a(n) = A304091(n) + A102460(n).
a(n) = A304094(n) + A059841(n) = A304096(n) + A059841(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 + 1/2 = 2.462858... . - Amiram Eldar, Dec 31 2023

A304096 Number of Lucas numbers larger than 3 (4, 7, 11, 18, ...) that divide n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

a(n) is the number of the divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.

Examples

			The divisors of 4 are 1, 2 and 4. Of these only 4 is a Lucas number larger than 3, thus a(4) = 1.
The divisors of 28 are 1, 2, 4, 7, 14 and 28. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
		

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304096(n) = sumdiv(n,d,(d>3)*A102460(d));

Formula

a(n) = Sum_{d|n, d>3} A102460(d).
a(n) = A304094(n) - A079978(n) - 1.
a(n) = A304092(n) - A059841(n) - A079978(n) - 1.
a(n) = A007949(A304104(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 - 4/3 = 0.629524... . - Amiram Eldar, Dec 31 2023

A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.

Original entry on oeis.org

2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020

Examples

			2.426320751167241187741569...
		

Crossrefs

Cf. A000045, A007598 (squares of Fibonacci numbers).

Programs

  • Mathematica
    RealDigits[Total[1/Fibonacci[Range[500]]^2],10,120][[1]] (* Harvey P. Dale, May 31 2016 *)
  • PARI
    sum(k=1,500,1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006

Formula

Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006

Extensions

More terms from Benoit Cloitre, Jan 07 2006

A304095 a(n) is the number of the proper divisors of n that are Lucas numbers larger than 3 (4, 7, 11, 18, ...).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

a(n) is the number of the proper divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.

Examples

			The proper divisors of 28 are 1, 2, 4, 7 and 14. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
		

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304095(n) = sumdiv(n,d,(d>3)*(dA102460(d));

Formula

a(n) = Sum_{d|n, d>3, dA102460(d).
a(n) = A007949(A304102(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 - 4/3 = 0.629524... . - Amiram Eldar, Jul 05 2025

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

Original entry on oeis.org

1, 2, 0, 7, 2, 9, 1, 9, 9, 6, 9, 8, 5, 7, 4, 7, 0, 7, 4, 4, 1, 7, 2, 0, 4, 1, 8, 4, 2, 5, 7, 6, 9, 9, 9, 4, 5, 3, 0, 6, 9, 2, 1, 4, 5, 4, 0, 1, 9, 0, 3, 6, 3, 7, 6, 9, 5, 1, 3, 1, 1, 5, 9, 4, 2, 2, 1, 2, 2, 4, 0, 0, 1, 5, 4, 0, 7, 0, 3, 5, 7, 7, 6, 1, 6, 7, 7, 6, 5, 5, 9, 7, 8, 6, 8, 8, 9, 9, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			1.207291996985747074417204...
		

References

  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.

Crossrefs

Cf. A000032, A001254 (squares of Lucas numbers).

Programs

  • Mathematica
    f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)

Formula

Equals Sum_{n >= 1} 1/L(n)^2.
Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - Peter Bala, Nov 13 2019
Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - Amiram Eldar, Jan 27 2022

A153416 Decimal expansion of Sum_{n>=0} 1/A000032(2*n+1).

Original entry on oeis.org

1, 3, 9, 6, 6, 8, 0, 4, 9, 7, 3, 9, 8, 2, 6, 1, 2, 3, 2, 5, 9, 2, 8, 6, 5, 8, 0, 7, 4, 6, 3, 1, 2, 1, 5, 2, 2, 9, 1, 3, 4, 4, 8, 8, 1, 9, 2, 9, 6, 3, 1, 3, 8, 5, 0, 6, 3, 8, 3, 7, 0, 8, 2, 7, 1, 6, 2, 4, 8, 6, 0, 5, 3, 0, 1, 6, 2, 5, 1, 6, 9, 2, 3, 6, 4, 1, 8, 6, 2, 2, 0, 6, 6, 2, 2, 1, 6, 3, 6, 9, 5, 8, 0, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Examples

			1.3966804973982612325...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ NSum[ 1/LucasL[2*n + 1], {n, 0, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100], 10, 105] // First (* Jean-François Alcover, Feb 07 2013 *)

Formula

From Amiram Eldar, Jul 05 2025: (Start)
Equals Sum_{n>=0} 1/A002878(n).
Equals A093540 - A153415. (End)

A228040 Decimal expansion of sum of reciprocals, row 2 of Wythoff array, W = A035513.

Original entry on oeis.org

6, 2, 9, 5, 2, 4, 8, 3, 9, 8, 7, 6, 3, 1, 2, 4, 4, 9, 5, 3, 5, 4, 6, 1, 7, 9, 5, 3, 4, 1, 8, 5, 0, 1, 9, 3, 3, 1, 6, 2, 5, 9, 6, 8, 3, 8, 2, 8, 8, 8, 6, 0, 8, 7, 7, 9, 7, 3, 8, 1, 9, 0, 7, 0, 8, 3, 7, 2, 8, 2, 7, 4, 2, 1, 3, 1, 2, 7, 0, 4, 4, 6, 4, 5, 7, 0
Offset: 0

Views

Author

Clark Kimberling, Aug 05 2013

Keywords

Comments

Let c be the constant given by A079586, that is, the sum of reciprocals of the Fibonacci numbers F(k) for k>=1. The number c-1, the sum of reciprocals of row 1 of W, is known to be irrational (see A079586). Conjecture: the same is true for all the other rows of W.
Let h be the constant given at A153387 and s(n) the sum of reciprocals of numbers in row n of W. Then h < 1 + s(n)*floor(n*tau) < c. Thus, s(n) -> 0 as n -> oo.

Examples

			1/4 + 1/7 + 1/11 + ... = 0.629524839876312449535461795341...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[n]; g = GoldenRatio; w[n_, k_] := w[n, k] = f[k + 1]*Floor[n*g] + f[k]*(n - 1);
    n = 2; Table[w[n, k], {n, 1, 5}, {k, 1, 5}]
    r = N[Sum[1/w[n, k], {k, 1, 2000}], 120]
    RealDigits[r, 10]

Formula

Equals A093540 - 4/3. - Amiram Eldar, May 22 2021

A304091 a(n) is the number of the proper divisors of n that are Lucas numbers (A000032, with 2 included).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 3, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304091(n) = sumdiv(n,d,(dA102460(d));

Formula

a(n) = Sum_{d|n, dA102460(d).
a(n) = A304092(n) - A102460(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2 + A093540 = 2.462858... . - Amiram Eldar, Jul 05 2025
Showing 1-10 of 16 results. Next