cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001254 Squares of Lucas numbers.

Original entry on oeis.org

4, 1, 9, 16, 49, 121, 324, 841, 2209, 5776, 15129, 39601, 103684, 271441, 710649, 1860496, 4870849, 12752041, 33385284, 87403801, 228826129, 599074576, 1568397609, 4106118241, 10749957124, 28143753121, 73681302249, 192900153616, 505019158609, 1322157322201, 3461452808004, 9062201101801, 23725150497409
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 36, 60.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001. [Note that Identity 34.7 on page 404 is wrong. - Alonso del Arte, Sep 07 2010]

Crossrefs

With alternating signs, cf. A075150.
Bisection of A001638 and A006499. First differences of A005970.
Second row of array A103324.

Programs

  • Magma
    [ Lucas(n)^2 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    with(combinat):seq(5*fibonacci(n)^2+4*(-1)^n, n=0..26)
  • Mathematica
    Table[LucasL[n]^2, {n, 0, 29}] (* Alonso del Arte, Apr 11 2011 *)
    LinearRecurrence[{2, 2, -1}, {4, 1, 9}, 33] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    a(n)=5*fibonacci(n)^2 + 4*(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(n)**2
    print([a(n) for n in range(33)]) # Michael S. Branicky, Apr 01 2021

Formula

a(n) = A000032(n)^2.
G.f.: ( 4-7*x-x^2 ) / ( (1+x)*(x^2-3*x+1) ). - Len Smiley, Nov 30 2001
From Ralf Stephan, Feb 08 2003: (Start)
a(n) = r^n + (1/r)^n + 2*(-1)^n, with r=(3+sqrt(5))/2.
a(n+3) = 2*a(n+2) + 2*a(n+1) - a(n). (End)
a(n) = L(2*n) + 2*(-1)^n = L(n-1)*L(n+1) + 5(-1)^n.
a(n) = 5*Fibonacci(n)^2 + 4*(-1)^n.
a(n) + a(n+1) = A106729(n). - R. J. Mathar, Nov 17 2011
E.g.f.: 2*exp(-x)*(exp(5*x/2)*cosh(sqrt(5)*x/2)+1). - Wolfdieter Lang, Jan 14 2012
a(n) = 1/4*( a(n-2) - a(n-1) - a(n+1) + a(n+2) ). The same recurrence holds for A007598. - Peter Bala, Aug 18 2015
For n>1, a(n)=(10*F(2*n-1) + 2*L(n-2)*L(n+1))/4 where F(n)=A000045(n), L(n)=A000204(n). - J. M. Bergot, Nov 25 2015
a(n) = (L(n-2)*L(n+2) + L(n-1)*L(n+1))/2 with L(k)=A000032(k). - J. M. Bergot, May 25 2017
From Peter Bala, Nov 13 2019: (Start)
Sum_{n >= 1} 1/a(n) = (1/8)*( theta_3(beta)^4 - 1 ) = A105394, where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97.
Sum_{n >= 1} 1/(a(n) - 5) = (3 - sqrt(5))/6; Sum_{n >= 1} (-1)^n/(a(n) - 5) = (15 - sqrt(5))/30; Sum_{n >= 1} 1/(a(2*n) - 5) = (5 - sqrt(5))/10.
Sum_{n >= 1} 1/(a(n) - 25/a(n)) = 2/9.
Conjecture: Sum_{n >= 1} 1/(a(n) - 5*(-1)^n*F(2*k+1)^2) = 1/(2*a(2*k+1)) for k = 0,1,2,.... (End)
a(n) = 3*a(n-1) - a(n-2) + 10*(-1)^n. - Greg Dresden, May 18 2020

A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.

Original entry on oeis.org

2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020

Examples

			2.426320751167241187741569...
		

Crossrefs

Cf. A000045, A007598 (squares of Fibonacci numbers).

Programs

  • Mathematica
    RealDigits[Total[1/Fibonacci[Range[500]]^2],10,120][[1]] (* Harvey P. Dale, May 31 2016 *)
  • PARI
    sum(k=1,500,1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006

Formula

Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006

Extensions

More terms from Benoit Cloitre, Jan 07 2006

A333209 a(n) is the denominator of Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)), with Lucas(i) as defined in A000032.

Original entry on oeis.org

2, 36, 7392, 1688148, 197412831, 21085413226416, 101768454084335346, 60343478516053297339236, 73240105330540144095414793632, 1956470757376233684880813258936380492, 32802418997525523144166495047229414174839, 202042966989952174292936124782341088713724476716231
Offset: 1

Views

Author

A.H.M. Smeets, Mar 11 2020

Keywords

Comments

The numerators are given in A333208.
See A333088 and A333089 for similar fractions for infinite sums of Fibonacci numbers.
Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)) is a fraction for n > 0.
Sum_{i >= 0} 1/Lucas(i)^2 = 1/4 + A105394, i.e., the n = 0 case, is believed to be transcendental.

Examples

			These infinite sums begin: 1/2, 7/36, 551/7392, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *)
  • Python
    from math import gcd
    f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
    while n < 12:
        n = n+1
        snum, sden = g0*g1*snum+sden, sden*g0*g1
        d = gcd(snum,sden*f0)
        print(n,sden*f0//d)
    f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020
    
  • Python
    from math import gcd
    f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
    while n < 12:
        n = n+1
        snum, sden = g0*g1*snum+sden, sden*g0*g1
        d = gcd(snum,sden*f0)
        print(n,sden*f0//d)
        f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020

Formula

a(n) = denominator of (1/Fibonacci(2n)) * Sum_{i = 1..n} 1/(Lucas(2i-2)*Lucas(2i-1)).
Lim_{n -> inf} (A333208(n)/a(n)) / (A333208(n-1)/a(n-1)) = 1 - 1/phi = 1/phi^2 = A132318.
The following generalization holds: (Start)
Let H_(a,b) (n) be defined by H_(a,b) (0) = a, H_(a,b) (1) = b and H_(a,b) (n) = H_(a,b) (n-1) + H_(a,b) (n-2) for n > 1, then
Sum_{i >= 0} 1/(H_(a,b) (i)*H_(a,b) (i+2n)) = (1/Fibonacci(2n)) * Sum_{i=1..n} 1/(H_(a,b) (2i-2)*H_(a,b) (2i-1)) for n > 0, and are thus all fractions. Specially, H_(0,1) are the Fibonacci numbers A000045, H_(2,1) as here, are the Lucas numbers A000032, and H_(3,1) are the Pibonacci numbers A104449. (End)

A333208 a(n) is the numerator of Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)), with Lucas(i) as defined in A000032.

Original entry on oeis.org

1, 7, 551, 48091, 2148268, 87644575267, 161577754532123, 36595152483523582367, 16965509829762630129638831, 173107561150078104051618631740949, 1108595900580419409151086339986148307, 2608169750203411467722731179728125652086612772
Offset: 1

Views

Author

A.H.M. Smeets, Mar 11 2020

Keywords

Comments

The denominators are given in A333209.
See A333088 and A333089 for similar fractions for infinite sums of Fibonacci numbers.
Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)) is a fraction for n > 0.
Sum_{i >= 0} 1/Lucas(i)^2 = 1/4 + A105394, i.e., the n = 0 case, is believed to be transcendental.

Examples

			These infinite sums begin: 1/2, 7/36, 551/7392, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Numerator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *)

Formula

a(n) = numerator of (1/Fibonacci(2n)) * Sum_{i=1..n} 1/(Lucas(2i-2)*Lucas(2i-1)).
Lim_{n -> inf} (a(n)/A333209(n)) / (a(n-1)/A333209(n-1)) = 1 - 1/phi = 1/phi^2 = A132318.
The following generalization holds: (Start)
Let H_(a,b) (n) be defined by H_(a,b) (0) = a, H_(a,b) (1) = b and H_(a,b) (n) = H_(a,b) (n-1) + H_(a,b) (n-2) for n > 1, then
Sum_{i >= 0} 1/(H_(a,b) (i)*H_(a,b) (i+2n)) = (1/Fibonacci(2n)) * Sum_{i=1..n} 1/(H_(a,b) (2i-2)*H_(a,b) (2i-1)) for n > 0, and are thus all fractions. Specially, H_(0,1) are the Fibonacci numbers A000045, H_(2,1) as here, are the Lucas numbers A000032, and H_(3,1) are the Pibonacci numbers A104449. (End)
Showing 1-4 of 4 results.