A093548 a(n) is the smallest number m such that each of the numbers m and m+1 has n distinct prime divisors.
2, 14, 230, 7314, 254540, 11243154, 965009045, 65893166030, 5702759516090, 490005293940084, 76622240600506314
Offset: 1
Examples
a(5) = 254540 because 254540=2^2*5*11*13*89; 254541=3*7*17*23*31 and 254540 is the smallest number m which each of the numbers m & m+1 has 5 distinct prime divisors. In contrast, A052215(5) = 378014 > 254540. - _N. J. A. Sloane_, Nov 21 2015
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 230, p. 65, Ellipses, Paris 2008.
Programs
-
Mathematica
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m);Do[Print[a[n]], {n, 7}] Flatten[Table[SequencePosition[PrimeNu[Range[260000]],{n,n},1],{n,5}],1][[;;,1]] (* To generate more terms, increase the Range and n constants. *) (* Harvey P. Dale, Jun 08 2023 *)
-
Python
from sympy import primefactors, primorial def a(n): m = primorial(n) while True: if len(primefactors(m)) == n: if len(primefactors(m+1)) == n: return m else: m += 2 else: m += 1 for n in range(1, 6): print(a(n), end=", ") # Michael S. Branicky, Feb 14 2021
Formula
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m)
Extensions
a(8), a(9) from Martin Fuller, Jan 17 2006
a(10)-a(11) from Donovan Johnson, Jan 08 2009
Comments