A093557 Triangle of denominators of coefficients of Faulhaber polynomials in Knuth's version.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 6, 15, 3, 15, 30, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 1, 5, 2, 5, 10, 1, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 1, 1, 5, 3, 10, 5, 15, 5, 5, 1, 1, 1, 1, 6, 3, 2, 3, 3, 7, 1, 1, 14, 21, 42, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1]; [1,1]; [1,2,1]; [1,3,3,1]; ... Denominators of [1]; [1,0]; [1,-1/2,0]; [1,-4/3,2/3,0]; ... (see W. Lang link in A093556.)
Links
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
- Wolfdieter Lang, First 10 rows.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012.
Crossrefs
Cf. A093556 (numerators).
Programs
-
Mathematica
a[m_, k_] := (-1)^(m-k)* Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Denominator[a[m, k]], {m, 1, 14}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
-
PARI
T(n,k) = denominator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025
Formula
a(m, k) = denominator(A(m, k)) with recursion: A(m, 0)=1, A(m, k)=-(sum(binomial(m-j, 2*k+1-2*j)*A(m, j), j=0..k-1))/(m-k) if 0<= k <= m-1, else 0. From the 1993 Knuth reference, given in A093556, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
Extensions
More terms from Michel Marcus, Aug 03 2025
Comments