cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093557 Triangle of denominators of coefficients of Faulhaber polynomials in Knuth's version.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 6, 15, 3, 15, 30, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 1, 5, 2, 5, 10, 1, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 1, 1, 5, 3, 10, 5, 15, 5, 5, 1, 1, 1, 1, 6, 3, 2, 3, 3, 7, 1, 1, 14, 21, 42, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Apr 02 2004

Keywords

Comments

The companion triangle with the numerators is A093556, where more information can be found.

Examples

			Triangle begins:
  [1];
  [1,1];
  [1,2,1];
  [1,3,3,1];
  ...
Denominators of [1]; [1,0]; [1,-1/2,0]; [1,-4/3,2/3,0]; ... (see W. Lang link in A093556.)
		

Crossrefs

Cf. A093556 (numerators).

Programs

  • Mathematica
    a[m_, k_] := (-1)^(m-k)* Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Denominator[a[m, k]], {m, 1, 14}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    T(n,k) = denominator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025

Formula

a(m, k) = denominator(A(m, k)) with recursion: A(m, 0)=1, A(m, k)=-(sum(binomial(m-j, 2*k+1-2*j)*A(m, j), j=0..k-1))/(m-k) if 0<= k <= m-1, else 0. From the 1993 Knuth reference, given in A093556, p. 288, eq.(*) with A^{(m)}_k = A(m, k).

Extensions

More terms from Michel Marcus, Aug 03 2025