A196837
Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.
Original entry on oeis.org
1, 2, -3, 3, -12, 11, 4, -30, 70, -50, 5, -60, 255, -450, 274, 6, -105, 700, -2205, 3248, -1764, 7, -168, 1610, -7840, 20307, -26264, 13068, 8, -252, 3276, -22680, 89796, -201852, 236248, -109584, 9, -360, 6090, -56700, 316365, -1077300, 2171040, -2345400, 1026576, 10, -495, 10560, -127050, 946638, -4510275, 13667720, -25228500, 25507152, -10628640
Offset: 1
n\m 0 1 2 3 4 5...
1 1
2 2 -3
3 3 -12 11
4 4 -30 70 -50
5 5 -60 255 -450 274
6 6 -105 700 -2205 3248 -1764
...
n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2).
n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is
Sum_{j=1..5} 1/(1-j*x), and this is
(5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x).
n=6 (A001553): the row polynomial factorizes into
(2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4).
Sums of powers of the first n positive integers in terms of S2:
n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3).
From _Wolfdieter Lang_, Oct 12 2011: (Start)
Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2.
a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) =
2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|.
S1,S2 formula for sums of powers with n=4, k=3:
A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
-
a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
-
from itertools import count, islice
from sympy.functions.combinatorial.numbers import stirling
def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True)
def A196837_gen(): # generator of terms
return (A196837_T(n,m) for n in count(1) for m in range(n))
A196837_list = list(islice(A196837_gen(),40)) # Chai Wah Wu, Oct 24 2024
A093556
Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -4, 2, 0, 1, -5, 3, -3, 0, 1, -4, 17, -10, 5, 0, 1, -35, 287, -118, 691, -691, 0, 1, -8, 112, -352, 718, -280, 140, 0, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, 1, -33, 506, -2585, 7579, -198793, 1540967, -627073, 1222277, -1222277, 0
Offset: 1
Triangle begins:
[1];
[1,0];
[1,-1,0];
[1,-4,2,0];
...
Numerators of Knuth's Faulhaber triangle A(m,k):
[1],
[1, 0],
[1, -1/2, 0],
[1, -4/3, 2/3, 0],
...
A(m,m-1)=1 if m=1, else 0.
Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:
[1/2],
[-1/6, 1/3],
[1/6, -1/3, 1/4],
[-3/10, 3/5, -1/2, 1/5],
...
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
- A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly 93 (1986) 451-455.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Wolfdieter Lang, First 10 rows and Faulhaber triangle with rational entries and examples.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. - _N. J. A. Sloane_, Jan 03 2013
Cf.
A065551 and
A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.
-
a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
-
T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025
A093558
Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -5, 17, -5, 5, 1, -5, 41, -236, 691, -691, 1, -7, 14, -22, 359, -7, 7, 1, -14, 77, -293, 1519, -1237, 3617, -3617, 1, -6, 217, -1129, 8487, -6583, 750167, -43867, 43867, 1, -5, 23, -470, 689, -28399, 1540967, -1254146, 174611, -174611
Offset: 2
Triangle begins:
[1];
[1,-1];
[1,-1,1];
[1,-1,1,-1];
[1,-5,17,-5,5]
...
Numerators of:
[1/6];
[1/10,-1/30];
[1/14,-1/14,1/42];
[1/18,-1/9,1/10,-1/30];
[1/22,-5/33,17/66,-5/22,5/66];
... (see Lang link)
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Wolfdieter Lang, First 10 rows and triangle with rational entries.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
-
a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Numerator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
A093559
Triangle of denominators of coefficients of Faulhaber polynomials used for sums of even powers.
Original entry on oeis.org
6, 10, 30, 14, 14, 42, 18, 9, 10, 30, 22, 33, 66, 22, 66, 26, 26, 78, 273, 910, 2730, 30, 30, 15, 9, 90, 2, 6, 34, 51, 51, 51, 102, 51, 170, 510, 38, 19, 95, 95, 190, 57, 3990, 266, 798, 42, 14, 7, 21, 6, 66, 1386, 693, 110, 330, 46, 138, 46, 23, 230, 690, 345, 23, 230, 46
Offset: 2
Triangle begins:
[6];
[10,30];
[14,14,42];
[18,9,10,30]; ...
Denominators of:
[1/6];
[1/10,-1/30];
[1/14,-1/14,1/42];
[1/18,-1/9,1/10,-1/30];
... (see W. Lang link in A093558.)
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
-
a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Denominator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
A335951
Triangle read by rows. The numerators of the coefficients of the Faulhaber polynomials. T(n,k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, -1, 4, 0, 0, 1, -4, 6, 0, 0, -3, 12, -20, 16, 0, 0, 5, -20, 34, -32, 16, 0, 0, -691, 2764, -4720, 4592, -2800, 960, 0, 0, 105, -420, 718, -704, 448, -192, 48, 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280
Offset: 0
The first few polynomials are:
[0] 1;
[1] x;
[2] x^2;
[3] (4*x - 1)*x^2*(1/3);
[4] (6*x^2 - 4*x + 1)*x^2*(1/3);
[5] (16*x^3 - 20*x^2 + 12*x - 3)*x^2*(1/5);
[6] (16*x^4 - 32*x^3 + 34*x^2 - 20*x + 5)*x^2*(1/3);
[7] (960*x^5 - 2800*x^4 + 4592*x^3 - 4720*x^2 + 2764*x - 691)*x^2*(1/105);
[8] (48*x^6 - 192*x^5 + 448*x^4 - 704*x^3 + 718*x^2 - 420*x + 105)*x^2*(1/3);
[9] (1280*x^7-6720*x^6+21120*x^5-46880*x^4+72912*x^3-74220*x^2+43404*x-10851)*x^2*(1/45);
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 0, -1, 4;
[4] 0, 0, 1, -4, 6;
[5] 0, 0, -3, 12, -20, 16;
[6] 0, 0, 5, -20, 34, -32, 16;
[7] 0, 0, -691, 2764, -4720, 4592, -2800, 960;
[8] 0, 0, 105, -420, 718, -704, 448, -192, 48;
[9] 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280;
- Johann Faulhaber, Academia Algebra. Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden. Johann Ulrich Schönigs, Augsburg, 1631.
- C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math., 12 (1834), 263-272.
- Donald E. Knuth, Johann Faulhaber and sums of powers, arXiv:math/9207222 [math.CA], 1992; Math. Comp. 61 (1993), no. 203, 277-294.
- Peter Luschny, Illustrating the Faulhaber polynomials for n = 1..7.
Cf.
A335952 (polynomial denominators),
A000012 (row sums of the polynomial coefficients).
-
FaulhaberPolynomial := proc(n) if n = 0 then return 1 fi;
expand((bernoulli(2*n, x+1) - bernoulli(2*n,1))/(2*n));
sort(simplify(expand(subs(x = (sqrt(8*x+1)-1)/2, %))), [x], ascending) end:
Trow := n -> seq(coeff(numer(FaulhaberPolynomial(n)), x, k), k=0..n):
seq(print(Trow(n)), n=0..9);
-
from math import lcm
from itertools import count, islice
from sympy import simplify,sqrt,bernoulli
from sympy.abc import x
def A335951_T(n,k):
z = simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs()
return z[n-k]*lcm(*(d.q for d in z))
def A335951_gen(): # generator of terms
yield from (A335951_T(n,k) for n in count(0) for k in range(n+1))
A335951_list = list(islice(A335951_gen(),20)) # Chai Wah Wu, May 16 2022
-
def A335951Row(n):
R. = PolynomialRing(QQ)
if n == 0: return [1]
b = expand((bernoulli_polynomial(x + 1, 2*n) -
bernoulli_polynomial(1, 2*n))/(2*n))
s = expand(b.subs(x = (sqrt(8*x+1)-1)/2))
return numerator(s).list()
for n in range(10): print(A335951Row(n)) # Peter Luschny, May 17 2022
A065551
Triangle of Faulhaber numbers (numerators) read by rows.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -3, 3, -1, 1, 0, 5, -5, 17, -2, 1, 0, -691, 691, -118, 41, -5, 1, 0, 35, -35, 359, -44, 14, -1, 1, 0, -3617, 3617, -1237, 1519, -293, 22, -7, 1, 0, 43867, -43867, 750167, -13166, 2829, -2258, 217, -4, 1, 0, -1222277, 1222277, -627073, 1540967, -198793, 689, -235, 46, -3, 1
Offset: 0
Triangle begins:
{1},
{0, 1},
{0, -1, 1},
{0, 1, -1, 1},
{0, -3, 3, -1, 1},
{0, 5, -5, 17, -2, 1}.
A385567
Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0
Triangle begins:
---------------------------------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 0, -1;
n=3: 1, -1, 0, 1;
n=4: 1, -4, 2, 0, -1;
n=5: 1, -5, 3, -3, 0, 5;
n=6: 1, -4, 17, -10, 5, 0, -691;
n=7: 1, -35, 287, -118, 691, -691, 0, 7;
n=8: 1, -8, 112, -352, 718, -280, 140, 0, -3617;
n=9: 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A386728
Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0
Triangle begins:
---------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 1, 30;
n=3: 1, 2, 1, 42;
n=4: 1, 3, 3, 1, 30;
n=5: 1, 2, 1, 2, 1, 66;
n=6: 1, 1, 2, 1, 1, 1, 2730;
n=7: 1, 6, 15, 3, 15, 30, 1, 6;
n=8: 1, 1, 3, 3, 3, 1, 1, 1, 510;
n=9: 1, 2, 1, 1, 5, 2, 5, 10, 1, 798;
n=10: 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A251926
The Faulhaber-Knuth a(0,n) sequence.
Original entry on oeis.org
2, 1, 1, 1, 1, 0, 0, 1, 37, -60, -5, 37, 174, -955, -10545, 38610, 176297, -322740, -205420, 4512655, 56820585, -104019264, -25907081, 94854194, 1141847218, -2090335775, -414239903275, 6066664425833, 85621405759989, -156743813184120, -4337631088920, 47644406040193, 1265208493396175131, -2316168508680582540, -192288633159406495
Offset: 4
We have: T_4(x) = 3x^2 + 3x - 1, T_4(x) - T_5(x) = x^2 + x, T_6(x) - T_7(x) = x^2 + x - 1, T_9(x) = (x^2 + x - 1)(2x^4 + 4x^3 - x^2 - 3x + 3) and T_15(x) - T_12(x) is divisible by (x^2 + x - 1), which implies a(0)=2, a(1)=1, a(2)=a(3), a(5)=0 and a(8)=a(11).
- Edyta Hetmaniok, Piotr Lorenc, Mariusz Pleszczyński, and Roman Wituła, Iterated integrals of polynomials, Applied Mathematics and Computation, Volume 249, 15 December 2014, Pages 389-398.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, and Roman Wituła, Iterated integrals of Faulhaber polynomials and some properties of their roots, 2018.
-
coeffFaulh[n_] := Module[{t, tab = {}, s, p, x},
If[n < 4, Return["Give n greater than 3."]];
t = Table[1, {n + 2}];
Do[t[[i + 1]] = BernoulliB[i], {i, 1, n + 1}];
t[[2]] = 1/2;
s[m_, x_] := (Sum[Binomial[m + 1, i]t[[ i + 1]] x^(m + 1 - i),{i,0,m}])/(m + 1);
Do[If[Mod[i, 2] == 0,
p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x (x + 1) (2 x + 1))][[2,1]], -1 + x + x^2, x],
p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x^2 (x + 1)^2)][[2,1]], -1 + x + x^2, x]];
tab = Append[tab, p], {i, 4, n}];
tab]
Showing 1-9 of 9 results.
Comments