A093657 2^(n-1)-th term of the row sums of triangle A093654.
1, 2, 6, 28, 206, 2418, 45970, 1440746, 75840096, 6828414424, 1069361760254, 295609883371824, 146078092162147126, 130419475982163166640, 212257994312591826735888, 634463537260289571176650942
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..86
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n,k]= If[n<0 || k>n, 0, If[n==k, 1, If[k==0, Sum[T[n-1,j]*T[j,0], {j,0,n-1}], Sum[T[n-1,j]*(T[j,k-1]+T[j,k]), {j,0,n-1}] ]]]; (* T = A097710 *) A093657[n_]:= A093657[n]= Sum[T[n,k], {k,0,n}]; Table[A093657[n], {n,0,30}] (* G. C. Greubel, Feb 21 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A097710 if n< 0 or k<0 or k>n: return 0 elif k==n: return 1 elif k==0: return sum(T(n-1,j)*T(j,0) for j in range(n)) else: return sum(T(n-1, j)*(T(j, k-1)+T(j,k)) for j in range(n)) def A093657(n): return sum(T(n,k) for k in range(n+1)) [A093657(n) for n in range(31)] # G. C. Greubel, Feb 21 2024