cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093709 Characteristic function of squares or twice squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 11 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Partial sums of a(n) for n >= 1 are A071860(n+1). - Jaroslav Krizek, Oct 18 2009
For n > 0, this is also the number of different triangular polyabolos that can be formed from n congruent isosceles right triangles (illustrated at A245676). - Douglas J. Durian, Sep 10 2017

Examples

			G.f. = 1 + q + q^2 + q^4 + q^8 + q^9 + q^16 + q^18 + q^25 + q^32 + q^36 + q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1/2), 104); A[1] + A[2]; /* Michael Somos, Jan 01 2015 */
  • Maple
    seq(`if`(issqr(n) or issqr(n/2),1,0), n=0..100); # Robert Israel, Apr 05 2016
  • Mathematica
    Table[Boole[IntegerQ[Sqrt[n]] || IntegerQ[Sqrt[2*n]]], {n, 0, 104}] (* Jean-François Alcover, Dec 05 2013 *)
    a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors[ n]] || OddQ [ Length @ Divisors[ 2 n]]]]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}]; (* Michael Somos, Jan 01 2015 *)
  • PARI
    {a(n) = issquare(n) || issquare(2*n)};
    

Formula

Expansion of psi(q^4) * f(-q^3, -q^5) / f(-q, -q^7) in powers of q where psi(), f() are Ramanujan theta functions.
Expansion of f(-q^3, -q^5)^2 / psi(-q) in powers of q where psi(), f() are Ramanujan theta functions. - Michael Somos, Jan 01 2015
Euler transform of period 8 sequence [ 1, 0, -1, 1, -1, 0, 1, -1, ...].
G.f. A(x) satisfies A(x^2) = (A(x) + A(-x)) / 2. a(2*n) = a(n).
Given g.f. A(x), then A(x) / A(x^2) = 1 + x*A092869(x^2).
Given g.f. A(x), then B(x) = A(x^2) / A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 + v - 2(u + u^2)*v + 2*(u*v)^2.
Multiplicative with a(0) = a(2^e) = 1, a(p^e) = 1 if e even, 0 otherwise.
a(n) = A053866(n) unless n=0. Characteristic function of A028982 union 0.
G.f.: (theta_3(q) + theta_3(q^2)) / 2 = 1 + (Sum_{k>0} x^(k^2) + x^(2*k^2)).
Dirichlet g.f.: zeta(2*s) * (1 + 2^-s).
For n>0: a(n) = A010052(n) + A010052(A004526(n))*A059841(n). - Reinhard Zumkeller, Nov 14 2009
a(n) = A000035(A000203(n)) = A000035(A000593(n)) = A000035(A001227(n)), if n>0. - Omar E. Pol, Apr 05 2016
Sum_{k=1..n} a(k) ~ (1 + 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020