cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093730 Antidiagonal sums of triangle A093729, which enumerates the number of nodes in the tree of tournament sequences.

Original entry on oeis.org

1, 1, 2, 5, 18, 102, 949, 14731, 386060, 17323052, 1351157580, 185867701560, 45682244004244, 20283964291276804, 16423005586691362832, 24434416299840231799694, 67236458264587977465709983
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2004

Keywords

Comments

Related to A008934 (the number of tournament sequences).

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n<0, 0, If[n==0, 1, If[k==0, 0, If[k<=n, T[n, k-1] - T[n-1, k] + T[n-1, 2*k-1] + T[n-1, 2*k], Sum[(-1)^(j-1) * Binomial[n+1, j]*T[n, k-j], {j, 1, n+1}]]]]]; a[n_] := Sum[T[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 06 2016, translated from PARI *)
  • PARI
    {T(n,k)=if(n<0,0,if(n==0,1,if(k==0,0, if(k<=n,T(n,k-1)-T(n-1,k)+T(n-1,2*k-1)+T(n-1,2*k), sum(j=1,n+1, (-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
    a(n)=sum(k=0,n,T(n-k,k))
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A093729
        if n<0: return 0
        elif n==0: return 1
        elif k==0: return 0
        elif kA093730(n): return sum(T(n-k,k) for k in range(n+1))
    [A093730(n) for n in range(31)] # G. C. Greubel, Feb 22 2024

Formula

a(n) = Sum_{k=0..n} A093729(n-k, k).