A093768 Positive first differences of the rows of triangle A088459, which enumerates symmetric Dyck paths.
1, 1, 1, 1, 2, 3, 1, 3, 8, 6, 1, 4, 15, 20, 20, 1, 5, 24, 45, 75, 50, 1, 6, 35, 84, 189, 210, 175, 1, 7, 48, 140, 392, 588, 784, 490, 1, 8, 63, 216, 720, 1344, 2352, 2352, 1764, 1, 9, 80, 315, 1215, 2700, 5760, 7560, 8820, 5292, 1, 10, 99, 440, 1925, 4950, 12375, 19800
Offset: 0
Examples
1; 1, 1; 1, 2, 3; 1, 3, 8, 6; 1, 4, 15, 20, 20; 1, 5, 24, 45, 75, 50; 1, 6, 35, 84, 189, 210, 175;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Maple
A093768 := proc(n,k) if k = 0 then A088459(n,k); else A088459(n,k)-A088459(n,k-1); end if; end proc: seq(seq(A093768(n,k),k=0..n-1),n=1..10) ; # R. J. Mathar, Apr 02 2017
-
Mathematica
T[n_, k_] := Binomial[n + 1, Ceiling[k/2]]*Binomial[n, Floor[k/2]] - Binomial[n + 1, Ceiling[(k - 1)/2]]*Binomial[n, Floor[(k - 1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 25 2017 *)
-
PARI
{T(n,k) =binomial(n+1,ceil(k/2))*binomial(n,floor(k/2)) -binomial(n+1,ceil((k-1)/2))*binomial(n,floor((k-1)/2))}
Formula
T(n, k) = C(n+1, ceiling(k/2))*C(n, floor(k/2)) - C(n+1, ceiling((k-1)/2))*C(n, floor((k-1)/2)) for n>=k>=0.
Comments