A093792 Hook products of all partitions of 13.
290304, 290304, 302400, 302400, 362880, 362880, 388800, 414720, 414720, 483840, 483840, 518400, 518400, 518400, 518400, 537600, 537600, 544320, 544320, 604800, 604800, 665280, 665280, 691200, 691200, 725760, 725760, 725760, 798336, 798336, 844800, 844800, 907200
Offset: 1
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..101
Programs
-
Maple
H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(13)[q])),q=1..numbpart(13))]);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; T[n_] := g[n, n, {}]; Sort[13!/T[13]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)
Formula
a(n) = 13!/A003877(102-n).