cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056144 a(1) = 1, a(m+1) = Sum_{k=1..m} gcd(m, a(k)).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 11, 7, 9, 27, 15, 21, 25, 13, 27, 49, 17, 33, 59, 19, 33, 69, 53, 45, 47, 61, 39, 117, 47, 29, 89, 31, 33, 161, 51, 75, 105, 37, 57, 159, 65, 41, 135, 43, 85, 251, 91, 139, 89, 127, 127, 171, 113, 157, 199, 131, 93, 227, 87, 117, 185, 121, 123, 227, 65
Offset: 1

Views

Author

Leroy Quet, Aug 04 2000

Keywords

Comments

From Ivan Neretin, Apr 06 2016: (Start)
a(n) >= n-1.
All terms except a(3) = 2 are odd.
For all n of the form 2^k+1 except 3, a(n) = n.
(End)

Examples

			a(7) = gcd(6,1) + gcd(6,1) + gcd(6,2) + gcd(6,3) + gcd(6,5) + gcd(6,9) = 1 + 1 + 2 + 3 + 1 + 3 = 11.
		

Crossrefs

Cf. A093820.

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(igcd(n-1, a(j)), j=2..n-1)
        end:
    seq(a(n), n=1..65);  # Alois P. Heinz, Mar 06 2025
  • Mathematica
    Fold[Append[#1, Total@GCD[#1, #2]] &, {1}, Range@64] (* Ivan Neretin, Apr 06 2016 *)

A286946 a(1) = 1; a(n+1) = Sum_{k=1..n} a(n)/gcd(a(k),a(n)).

Original entry on oeis.org

1, 1, 2, 5, 16, 57, 286, 1431, 9064, 51398, 359787, 3118155, 25568872, 223727631, 2311852188, 15990310968, 105935810164, 1038449718056, 10903722039589, 185715007642033, 3528585145198628, 46753753173881822, 658243630211230916, 9215410822957232825, 197209791611284782456, 2112570763708981231112
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 31 2017

Keywords

Examples

			a(1) = 1;
a(2) = a(1)/gcd(a(1),a(1)) = 1/gcd(1,1) = 1;
a(3) = a(2)/gcd(a(1),a(2)) + a(2)/gcd(a(2),a(2)) = 1/gcd(1,1) + 1/gcd(1,1) = 2;
a(4) = a(3)/gcd(a(1),a(3)) + a(3)/gcd(a(2),a(3)) + a(3)/gcd(a(3),a(3)) = 2/gcd(1,2) + 2/gcd(1,2) + 2/gcd(2,2) = 5, etc.
		

Crossrefs

Programs

  • Maple
    A[1]:= 1:
    for n from 1 to 50 do
      A[n+1]:= add(A[n]/igcd(A[k],A[n]),k=1..n)
    od:
    seq(A[i],i=1..50); # Robert Israel, Sep 01 2017
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[n - 1]/GCD[a[k - 1], a[n - 1]], {k, 2, n}]; Table[a[n], {n, 26}]
    a[1] = 1; a[n_] := a[n] = Sum[LCM[a[k - 1], a[n - 1]]/a[k - 1], {k, 2, n}]; Table[a[n], {n, 26}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} lcm(a(k),a(n))/a(k).
Showing 1-2 of 2 results.