A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A195348 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90.
7, 5, 7, 8, 7, 4, 7, 6, 3, 9, 2, 6, 0, 2, 3, 9, 9, 8, 8, 1, 2, 1, 8, 6, 7, 4, 7, 4, 2, 7, 0, 0, 9, 5, 3, 0, 3, 4, 6, 7, 9, 2, 5, 4, 0, 1, 9, 4, 4, 5, 2, 0, 3, 5, 8, 4, 1, 3, 3, 3, 8, 1, 7, 4, 6, 1, 0, 0, 9, 1, 5, 8, 9, 3, 3, 7, 9, 8, 1, 0, 2, 3, 2, 1, 8, 3, 1, 2, 7, 1, 1, 0, 1, 2, 8, 5, 8, 2, 1, 3
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
(A)=0.7578747639260239988121867474270095303467925401944... (A)=(4*sqrt(6-3*sqrt(3)))/(3+sqrt(3)) (B)=2-(2/3)sqrt(3) (C)=sqrt(6)-sqrt(2)
Programs
-
Mathematica
a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *)
A195380 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,sqrt(3),sqrt(1) right triangle ABC (angles 30, 60, 90).
5, 5, 7, 5, 7, 0, 1, 7, 6, 9, 1, 7, 0, 9, 3, 8, 0, 3, 7, 2, 1, 1, 2, 9, 1, 4, 6, 0, 4, 2, 9, 2, 3, 1, 8, 7, 2, 1, 1, 5, 2, 6, 1, 0, 0, 8, 9, 0, 3, 0, 5, 5, 9, 9, 2, 1, 6, 7, 9, 5, 5, 8, 9, 0, 9, 5, 8, 8, 2, 5, 6, 8, 1, 9, 4, 3, 6, 5, 6, 9, 3, 1, 0, 6, 8, 1, 8, 1, 7, 7, 7, 1, 2, 4, 7, 7, 1, 9, 3, 5
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
Philo(ABC,I)=0.55757017691709380372112914604292318...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *)
A093822 Decimal expansion of -109/121 - 82/(121*sqrt(3)) + (2*sqrt(-35139 + 28634*sqrt(3)))/121 - Pi/3 + arccos((-1 + sqrt(3))/2).
8, 4, 4, 1, 3, 7, 1, 2, 3, 7, 9, 5, 6, 3, 7, 6, 8, 1, 0, 6, 3, 0, 8, 7, 1, 3, 8, 0, 2, 9, 5, 2, 2, 6, 5, 4, 5, 1, 8, 4, 5, 1, 7, 4, 9, 8, 6, 6, 2, 7, 5, 9, 4, 2, 6, 2, 4, 8, 4, 9, 6, 8, 1, 6, 6, 4, 9, 6, 9, 8, 2, 9, 4, 0, 1, 0, 3, 9, 4, 1, 4, 6, 2, 2, 9, 9, 8, 0, 9, 6, 7, 0, 5, 8, 1, 6, 0, 1, 9, 8, 6, 9
Offset: 0
Comments
Area of lamina found by Sprague in the Lebesgue minimal problem.
Examples
0.844137123...
Links
- Eric Weisstein's World of Mathematics, Lebesgue Minimal Problem
Programs
-
Mathematica
RealDigits[-109/121-82/(121Sqrt[3])+(2Sqrt[-35139+28634Sqrt[3]])/121-Pi/3+ ArcCos[(-1+Sqrt[3])/2],10,120][[1]] (* Harvey P. Dale, Sep 22 2020 *)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions