A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
Keywords
A306594 a(n) = Product_{i=1..n, j=1..n, k=1..n} (i + j + k).
1, 3, 144000, 455282248974336000000, 9608917807566747651759509633033255126040576000000000000
Offset: 0
Keywords
Comments
Next term is too long to be included.
Programs
-
Maple
a:= n-> mul(mul(mul(i+j+k, i=1..n), j=1..n), k=1..n): seq(a(n), n=0..5); # Alois P. Heinz, Jun 24 2023
-
Mathematica
Table[Product[i+j+k, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}] Table[Product[k^(3*(n - k + 1) (n - k + 2)/2), {k, 1, n}] * Product[k^((3*n - k + 1) (3*n - k + 2)/2), {k, 1, 3*n}] / Product[k^(3*(2*n - k + 1) (2*n - k + 2)/2), {k, 1, 2*n}], {n, 1, 6}] Clear[a]; a[n_] := a[n] = If[n == 1, 3, 3*n*a[n-1] * BarnesG[2+n]^3 * BarnesG[2+3*n]^3 * Gamma[1+2*n]^3 / (BarnesG[2+2*n]^6 * Gamma[1+3*n]^3)]; Table[a[n], {n, 1, 6}] (* Vaclav Kotesovec, Mar 28 2019 *)
Formula
a(n) = Product_{k=1..n} (BarnesG(k+2) * BarnesG(2*n+k+2) / BarnesG(n+k+2)^2).
a(n) = Product_{k=1..n} (k^(3*(n - k + 1)*(n - k + 2)/2)) * Product_{k=1..3*n} (k^((3*n - k + 1)*(3*n - k + 2)/2)) / Product_{k=1..2*n} (k^(3*(2*n - k + 1)*(2*n - k + 2)/2)).
a(n) ~ sqrt(Pi) * 3^(9*n^3/2 + 27*n^2/4 + 3*n + 3/8) * n^(n^3 + 3/8) / (A^(3/2) * 2^(4*n^3 + 9*n^2 + 6*n + 5/8) * exp(11*n^3/6 - Zeta(3)/(8*Pi^2) - 1/8)), where A is the Glaisher-Kinkelin constant A074962.
Extensions
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
A093885 a(n) = floor( {product of all possible sums of (n-1) numbers chosen from among first n numbers} / {sum of all possible products of (n-1) numbers chosen from among first n numbers} ).
0, 0, 5, 60, 876, 15820, 342490, 8659697, 250596841, 8170355939, 296392500231, 11842341000706, 516766134975841, 24454542316972336, 1247414741568401188, 68231675778495540368, 3983959314088980184276, 247324089280835008754847
Offset: 1
Keywords
Comments
The denominator is given by A000254(n).
Examples
a(1) = 1, a(2) = floor((1*2)/(1+2)) = 1, a(3) = floor((1+2)*(1+3)*(2+3)/(1*2+1*3+2*3)) = floor(60/11) = 5.
References
- Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octogon Mathematical Magazine Vol. 8, No. 2, October 2000.
- Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal Vol. 11, No. 1-2-3 Spring 2000.
Programs
-
Mathematica
Do[l = Select[Subsets[Range[n]], Length[ # ]==n-1&]; a = Times @@ Map[Plus @@ #&, l]; b = Plus @@ Map[Times @@ #&, l]; Print[Floor[a/b]], {n, 1, 20}] (* Ryan Propper, Sep 28 2006 *)
Extensions
More terms from Ryan Propper, Sep 28 2006
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions