A093905 Triangle read by rows: for 0 <= k < n, a(n, k) is the sum of the products of all subsets of {n-k, n-k+1, ..., n} with k members.
1, 1, 3, 1, 5, 11, 1, 7, 26, 50, 1, 9, 47, 154, 274, 1, 11, 74, 342, 1044, 1764, 1, 13, 107, 638, 2754, 8028, 13068, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 1, 19, 242, 2414, 19524, 127860
Offset: 1
Examples
Triangle begins: 1 1 3 1 5 11 1 7 26 50 1 9 47 154 274 ... a(5, 3) = 4*3*2+5*3*2+5*4*2+5*4*3 = 154.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
T[n_, 0] := 1; T[n_, k_]:= Product[i, {i, n - k, n}]*Sum[1/i, {i, n - k, n}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] (* G. C. Greubel, Jan 21 2017 *)
-
PARI
a(n, k) = prod(i=n-k, n, i)*sum(i=n-k,n,1/i); tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jan 21 2017
Formula
Extensions
Edited and extended by David Wasserman, Apr 24 2007
Comments