cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A167763 Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.
The last five rows in the example section appear in the table on p. 8 of Getzler. Cf. also A173075. - Tom Copeland, Jan 22 2020

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,  0;
  1,  3,  3,  1,  0;
  1,  4,  7,  4,  1,  0;
  1,  5, 12, 12,  5,  1,  0; ...
		

Crossrefs

Cf. this sequence (p=0), A118340 (p=1), A118345 (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    {T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2n+m) = [A001764^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A001764.
If n > 2k, T(n,k) = binomial(n+k+1,k)*(n-2k+1)/(n+k+1), else T(n,k) = T(n,n-1-k), with conditions: T(n,0)=1 for n>=0 and T(n,n)=0 for n > 0. - Paul D. Hanna, Nov 12 2009
Sum_{k=0..n} T(n, k, p=0) = A093951(n). - G. C. Greubel, Feb 17 2021

A084081 Sum of lists created by n substitutions k -> Range[k+1,0,-2] starting with {0}, counting down from k+1 to 0 step -2.

Original entry on oeis.org

0, 1, 2, 5, 10, 24, 50, 121, 260, 637, 1400, 3468, 7752, 19380, 43890, 110561, 253000, 641355, 1480050, 3771885, 8765250, 22439040, 52451256, 134796060, 316663760, 816540124, 1926501200, 4982228488, 11798983280, 30593078076, 72690164850
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Comments

Lengths of lists is A047749.

Examples

			Lists {0}, {1}, {2, 0}, {3, 1, 1}, {4, 2, 0, 2, 0, 2, 0} sum to 0, 1, 2, 5, 10.
		

Crossrefs

Programs

  • Magma
    F:=Floor; B:=Binomial;
    function A084081(n)
      if (n mod 2) eq 0 then return 10*B(F((3*n+2)/2), F((n-2)/2))/(n+3);
      else return 2*(3*n+1)*B(F((3*n+5)/2), F((n+1)/2))/((n+3)*(3*n+5));
      end if; return A084081;
    end function;
    [A084081(n): n in [0..40]]; // G. C. Greubel, Oct 17 2022
    
  • Mathematica
    Plus@@@Flatten/@NestList[ # /. k_Integer :> Range[k+1, 0, -2]&, {0}, 8]
    A084081[n_]:= If[EvenQ[n], 10*Binomial[(3*n+2)/2, (n-2)/2]/(n+3), 2*(3*n + 1)*Binomial[(3*n+5)/2, (n+1)/2]/((n+3)*(3*n+5))];
    Table[A084081[n], {n, 40}] (* G. C. Greubel, Oct 17 2022 *)
  • SageMath
    def A084081(n):
        if (n%2==0): return 10*binomial(int((3*n+2)/2), int((n-2)/2))/(n+3)
        else: return 2*(3*n+1)*binomial(int((3*n+5)/2), int((n+1)/2))/((n+3)*(3*n+5))
    [A084081(n) for n in range(40)] # G. C. Greubel, Oct 17 2022

Formula

Equals A093951(n) - A047749(n).
From G. C. Greubel, Oct 17 2022: (Start)
a(2*n+1) = (3*n-1)*binomial[3*n+1, n]/((n+1)*(3*n+1)).
a(2*n) = 10*binomial(3*n+1, n-1)/(2*n+3). (End)
Showing 1-2 of 2 results.