A094008 Primes which are the denominators of convergents of the continued fraction expansion of e.
3, 7, 71, 18089, 10391023, 781379079653017, 2111421691000680031, 1430286763442005122380663256416207
Offset: 1
Keywords
Examples
a(1) = 3 because 3 is the first prime denominator of a convergent, 8/3, of the simple continued fraction for e
Links
- Joerg Arndt, Table of n, a(n) for n = 1..10
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e.
Programs
-
Mathematica
Block[{$MaxExtraPrecision=1000},Select[Denominator[Convergents[E,500]], PrimeQ]] (* Harvey P. Dale, Aug 23 2011 *)
-
PARI
default(realprecision,10^5); cf=contfrac(exp(1)); n=0; { for(k=1, #cf, \\ generate b-file pq = contfracpnqn( vector(k,j, cf[j]) ); p = pq[1,1]; q = pq[2,1]; \\ if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086791 if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A094008 ); } /* Joerg Arndt, Apr 21 2013 */
Comments