cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094082 Decimal expansion of Sum_{n>=1} (n!/n^n).

Original entry on oeis.org

1, 8, 7, 9, 8, 5, 3, 8, 6, 2, 1, 7, 5, 2, 5, 8, 5, 3, 3, 4, 8, 6, 3, 0, 6, 1, 4, 5, 0, 7, 0, 9, 6, 0, 0, 3, 8, 8, 1, 9, 8, 7, 3, 4, 0, 0, 4, 8, 9, 2, 8, 9, 9, 0, 4, 8, 2, 9, 6, 1, 7, 6, 6, 9, 1, 2, 2, 2, 9, 6, 3, 8, 6, 6, 6, 1, 2, 1, 4, 2, 1, 1, 3, 6, 1, 7, 6, 5, 0, 1, 9, 7, 3, 8, 9, 1, 2, 3, 5, 3, 2, 3, 9, 6, 8
Offset: 1

Views

Author

Ross La Haye, May 01 2004

Keywords

Comments

Sum_{n>=1} n!/n^(n+2) = Integral_{x=0..infinity} -log(1-x*exp(-x)) dx = 1.157694752682... . - Vaclav Kotesovec, Jan 05 2016

Examples

			1.879853862175258533486306145...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ NSum[n!/n^n, {n, 1, Infinity}, WorkingPrecision -> 110, NSumTerms -> 180] , 10, 99] // First (* Jean-François Alcover, Feb 12 2013 *)
    RealDigits @ NIntegrate[x E^x/(E^x - x)^2, {x, 0, Infinity}, WorkingPrecision -> 105] // First (* Michael Somos, May 18 2021 *)
  • PARI
    firstDecimalDigits(n)={default(realprecision,n);return(digits(floor(suminf(n=1,n!/(n^n))*10^n)))}
    print(firstDecimalDigits(98)); \\ R. J. Cano, Dec 30 2016
    
  • PARI
    suminf(n=1,n!/(n^n)) \\ Michel Marcus, Dec 30 2016

Formula

Equals Integral_{x=0..oo} x*exp(x)/(exp(x)-x)^2 dx. - Michael Somos, May 18 2021
Equals Integral_{x=1..oo} 1/(x - log(x))^2 dx. - Fabián Pereyra, May 10 2023

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), May 01 2004