cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067957 Number of divisor chains of length n: permutations s_1,s_2,...,s_n of 1,2,...,n such that for all j=1,2,...,n, s_j divides Sum_{i=1..j} s_i.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 7, 24, 22, 29, 39, 67, 55, 386, 235, 312, 347, 451, 1319, 5320, 3220, 4489, 20237, 36580, 52875, 197103, 216562, 289478, 567396, 659647, 1111153, 3131774, 2200426, 29523302, 34214028, 48161995, 32616148, 242860900, 293579041, 363415618
Offset: 0

Views

Author

Floor van Lamoen, Mar 06 2002

Keywords

Comments

Apparently this sequence originated in a problem composed by Matthijs Coster in 2002.
Let M = floor(n/2), then the following permutations always work: for n even: M+1, 1, M+2, 2, ..., n-1, M-1, n, M; for n odd: M+1, 1, M+2, 2, ..., M-1, n-1, M, n. - Daniel Asimov, May 04 2004

Examples

			Examples of divisor chains of lengths 1 through 9:
  1
  2 1
  3 1 2
  4 2 3 1
  5 1 2 4 3
  6 2 4 3 5 1
  7 1 2 5 3 6 4
  8 2 5 3 6 4 7 1
  8 4 3 5 1 7 2 6 9
The five divisor chains of length 6 are:
  4 1 5 2 6 3
  4 2 6 3 5 1
  5 1 2 4 6 3
  5 1 6 4 2 3
  6 2 4 3 5 1. - Eugene McDonnell, May 21 2004
		

Crossrefs

Extensions

a(31)-a(35) from Jud McCranie, May 06 2004
a(0)=1 prepended by Alois P. Heinz, Aug 26 2017
a(36)-a(41) from Zhao Hui Du, May 12 2024

A094099 Number of divisor chains of length 2n+1 which are both cyclic and anchored.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 4, 47, 6, 6, 462, 372, 1589, 20896, 4118, 12815, 130528, 1942045, 163775, 18340336, 5065878, 3607762
Offset: 0

Views

Author

Christopher Landauer, May 04 2004

Keywords

Comments

A divisor chain of length n is an arrangement of 1..n such that each term is a divisor of the sum of the preceding terms.

Crossrefs

Formula

a(n) = A094097(2n+1). - Martin Fuller, Jul 18 2025

Extensions

a(14)-a(21) from A094097 by Martin Fuller, Jul 18 2025

A094098 Number of divisor chains of length n in which the first term is a divisor of n(n+1)/2 ("cyclic" divisor chains).

Original entry on oeis.org

1, 0, 2, 0, 2, 0, 3, 0, 5, 0, 6, 0, 6, 0, 147, 1, 22, 2, 27, 165, 519, 0, 516, 2021, 1912, 506, 45658, 514, 7308, 1535, 30746, 68918, 145920, 1370
Offset: 1

Views

Author

Christopher Landauer, May 04 2004

Keywords

Comments

A divisor chain of length n is an arrangement of 1..n such that each term is a divisor of the sum of the preceding terms.

Crossrefs

Extensions

a(29)-a(34) from John W. Layman, May 07 2004

A093323 Triangle read by rows giving number of divisor chains of length n beginning with k (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 3, 1, 1, 0, 0, 0, 0, 1, 0, 1, 5, 0, 0, 0, 0, 1, 3, 4, 12, 4, 0, 0, 0, 0, 0, 4, 5, 7, 3, 3, 0, 0, 0, 0, 0, 4, 7, 9, 3, 4, 2, 0, 0, 0, 1, 0, 0, 2, 5, 4, 8, 11, 8, 0, 0, 0, 1, 0, 0, 2, 7, 11, 12, 19, 11, 4, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), May 11 2004

Keywords

Comments

A divisor chain of length n is an arrangement of 1..n such that each term is a divisor of the sum of the preceding terms.

Examples

			Triangle begins:
1
0 1
0 1 1
0 0 1 1
0 0 1 2 1
0 0 0 2 2 1
0 0 0 2 3 1 1
0 0 0 0 1 0 1 5
0 0 0 0 1 3 4 12 4
0 0 0 0 0 4 5 7 3 3
0 0 0 0 0 4 7 9 3 4 2
0 0 0 1 0 0 2 5 4 8 11 8
0 0 0 1 0 0 2 7 11 12 19 11 4
0 0 0 0 0 0 0 4 12 4 14 7 8 6
0 0 0 1 0 2 3 14 32 42 64 41 77 63 47
0 0 0 1 0 0 0 0 16 34 39 26 20 24 31 44
0 0 0 1 0 0 0 0 16 44 55 27 34 31 42 56 6
0 0 0 0 0 2 3 2 2 21 13 20 19 31 51 70 76 37
0 0 0 0 0 4 3 3 7 21 17 24 25 34 54 91 113 49 6
0 0 0 0 0 2 0 8 17 12 31 41 43 91 60 121 223 144 360 166
0 0 0 0 0 7 0 20 31 26 57 197 314 383 283 706 938 473 969 454 462
0 0 0 0 0 6 0 17 18 21 0 124 131 220 148 445 538 232 443 222 423 232
0 0 0 0 0 6 0 17 22 29 9 138 164 279 188 520 640 309 616 302 521 357 372
0 0 0 6 0 6 0 44 76 219 86 155 314 545 389 1354 1296 819 727 1246 1959 2619 6247 2130
0 0 0 8 0 11 7 60 112 257 102 273 323 1519 579 2388 2828 1600 2193 2535 3532 3955 9554 3155 1589
0 0 0 3 5 14 15 80 53 139 34 556 453 3063 1160 3194 1739 1756 2015 3648 5311 2903 7496 4084 6061 9093
		

Crossrefs

Cf. A094097 (right diagonal).
Showing 1-4 of 4 results.