cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094260 Sum of next n numbers/n if n divides the sum else n times the sum of next n numbers.

Original entry on oeis.org

1, 10, 5, 136, 13, 666, 25, 2080, 41, 5050, 61, 10440, 85, 19306, 113, 32896, 145, 52650, 181, 80200, 221, 117370, 265, 166176, 313, 228826, 365, 307720, 421, 405450, 481, 524800, 545, 668746, 613, 840456, 685, 1043290, 761, 1280800, 841, 1556730, 925, 1875016, 1013, 2239786
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2004

Keywords

Comments

Quasipolynomial of order 2 and degree 5. - Charles R Greathouse IV, Oct 14 2013

Examples

			The sequence is: 1/1, (2+3)*2, (4+5+6)/3, (7+8+9+10)*4, ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{1,10,5,136,13,666,25,2080,41,5050},50] (* Harvey P. Dale, May 01 2020 *)
    fix[c_]:=If[Mod[Total[c],Length[c]]==0,Total[c]/Length[c],Length[c] Total[c]]; fix/@With[ {nn=50},TakeList[ Range[(nn(nn+1))/2],Range[nn]]] (* Harvey P. Dale, Apr 05 2023 *)
  • PARI
    a(n) = if (n%2, (n^2+1)/2, n^2*(n^2+1)/2); \\ Michel Marcus, Aug 23 2022

Formula

For even n, a(n) = A000217(n^2) = n^2*(n^2+1)/2; for odd n, a(n) = (n^2 + 1)/2.
Sum_{n>=1} 1/a(n) = 1 + Pi^2/12 - Pi*cosech(Pi). - Amiram Eldar, Aug 23 2022

Extensions

Edited and extended by Max Alekseyev, Apr 26 2009