cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094292 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 4.

Original entry on oeis.org

0, 0, 1, 3, 9, 25, 68, 182, 483, 1275, 3355, 8811, 23112, 60580, 158717, 415715, 1088661, 2850645, 7463884, 19541994, 51163695, 133951675, 350695511, 918141623, 2403740304, 6293097000, 16475579353, 43133687427, 112925557953, 295643107825, 774003961940
Offset: 0

Views

Author

Herbert Kociemba, Jun 02 2004

Keywords

Comments

In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} sin(j*r*Pi/m)*sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k.
a(n+1) is an inverse Catalan transform of F(3n)/F(3). The g.f. may be obtained from that of A001076 under the mapping g(x)-> g(x(1-x)). - Paul Barry, Nov 17 2004
A transform of Fibonacci(2n): Fibonacci(2n) may be recovered as Sum_{k=0..2n} Sum_{j=0..k} binomial(0,2n-k)*binomial(k,j)(-1)^(k-j)*A094292(j). - Paul Barry, Jun 10 2005

Crossrefs

Programs

  • Mathematica
    Table[Sum[Fibonacci[n - 1 + i]/2, {i, 0, n - 1}], {n, 0, 27}]  (* Zerinvary Lajos, Jul 12 2009 *)
    Table[Fibonacci[n] (LucasL[n] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 27 2016 *)
  • MuPAD
    (numlib::fibonacci(2*n)-numlib::fibonacci(n))/2 $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n) = (fibonacci(2*n) - fibonacci(n))/2; \\ Altug Alkan, Dec 17 2017

Formula

a(n) = (2/5)*Sum_{k=1..4} sin(2*Pi*k/5)*sin(4*Pi*k/5)*(1+2*cos(Pi*k/5))^n.
From Herbert Kociemba, Jun 16 2004: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4).
G.f.: (x^2-x^3)/(1 - 4x + 3x^2 + 2x^3 - x^4). (End)
a(n) = (Fibonacci(2*n) - Fibonacci(n))/2. - Vladeta Jovovic, Jul 17 2004
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*F(3n-3k)/F(3). - Paul Barry, Nov 17 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*Fibonacci(2k). - Paul Barry, Jun 10 2005
a(n) = Sum_{k=0..n-1} Fibonacci(n+k-1)/2. - Gary Detlefs, Feb 22 2011
a(n) = Fibonacci(n)*(Lucas(n) - 1)/2. - Vladimir Reshetnikov, Sep 27 2016

Extensions

a(0) = a(1) = 0 added and offset changed to 0 by Vladimir Reshetnikov, Oct 04 2016