A094309 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 5.
1, 4, 14, 44, 132, 384, 1096, 3088, 8624, 23936, 66144, 182208, 500800, 1374208, 3766400, 10313984, 28226304, 77211648, 211138048, 577223680, 1577772032, 4312088576, 11783915520, 32200396800, 87985401856, 240405151744
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4).
Programs
-
Magma
I:=[1, 4, 14]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
-
Mathematica
f[n_] := FullSimplify[ TrigToExp[(1/3)Sum[ Sin[Pi*k/3] Sin[5Pi*k/6](1 + 2Cos[Pi*k/6])^n, {k, 1, 5}]]]; Table[ f[n], {n, 3, 28}] (* Robert G. Wilson v, 2004 *) LinearRecurrence[{4,-2, -4},{1,4,14},40] (* Vincenzo Librandi, Jun 24 2012 *) CoefficientList[Series[1/(1-4 x+2 x^2+4 x^3),{x,0,30}],x] (* Harvey P. Dale, Aug 04 2021 *)
Formula
a(n) = (1/3) * Sum_{k=1..5} sin(Pi*k/3)*sin(5*Pi*k/6)*(1+2*cos(Pi*k/6))^n.
From Paul Barry, Jul 28 2004: (Start)
G.f. : x^3/((1-2*x)*(1-2*x-2*x^2));
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3);
a(n) = (1+sqrt(3))^n*(3/2 + 5*sqrt(3)/6) + (1-sqrt(3))^n*(3/2 - 5*sqrt(3)/6) - 2^(n+1) [offset 0]. (End)
Comments