cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094309 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 5.

Original entry on oeis.org

1, 4, 14, 44, 132, 384, 1096, 3088, 8624, 23936, 66144, 182208, 500800, 1374208, 3766400, 10313984, 28226304, 77211648, 211138048, 577223680, 1577772032, 4312088576, 11783915520, 32200396800, 87985401856, 240405151744
Offset: 3

Views

Author

Herbert Kociemba, Jun 02 2004

Keywords

Comments

In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} sin(j*r*Pi/m)*sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k.
With offset = 1, a(n) is the number of length n words on {0,1,2} in which the longest run of consecutive 0's is exactly 1. - Geoffrey Critzer, Jan 13 2013

Programs

  • Magma
    I:=[1, 4, 14]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(1/3)Sum[ Sin[Pi*k/3] Sin[5Pi*k/6](1 + 2Cos[Pi*k/6])^n, {k, 1, 5}]]]; Table[ f[n], {n, 3, 28}] (* Robert G. Wilson v, 2004 *)
    LinearRecurrence[{4,-2, -4},{1,4,14},40] (* Vincenzo Librandi, Jun 24 2012 *)
    CoefficientList[Series[1/(1-4 x+2 x^2+4 x^3),{x,0,30}],x] (* Harvey P. Dale, Aug 04 2021 *)

Formula

a(n) = (1/3) * Sum_{k=1..5} sin(Pi*k/3)*sin(5*Pi*k/6)*(1+2*cos(Pi*k/6))^n.
From Paul Barry, Jul 28 2004: (Start)
G.f. : x^3/((1-2*x)*(1-2*x-2*x^2));
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3);
a(n) = (1+sqrt(3))^n*(3/2 + 5*sqrt(3)/6) + (1-sqrt(3))^n*(3/2 - 5*sqrt(3)/6) - 2^(n+1) [offset 0]. (End)