cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094379 Least number having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.

Original entry on oeis.org

1, 3, 11, 23, 35, 47, 59, 71, 95, 188, 119, 164, 231, 191, 215, 239, 299, 356, 335, 311, 404, 431, 591, 584, 524, 479, 551, 656, 831, 776, 671, 719, 791, 839, 1004, 1031, 959, 1244, 1196, 1439, 1271, 1151, 1931, 1847, 1391, 1319, 1811, 1784, 1616, 1511, 1799
Offset: 0

Views

Author

T. D. Noe, Apr 28 2004

Keywords

Comments

Note that the Mathematica program computes A094379, A094380 and A094381, but outputs only this sequence.
A066955(a(n)) = n and A066955(m) = n for m < a(n). [Reinhard Zumkeller, Mar 23 2012]

Examples

			a(3) = 23 because 23 is the least number with 3 representations: (a,b,c) = (1,1,11), (1,2,7) and (1,3,5).
		

References

Crossrefs

Cf. A025052 (n having no representations), A093670 (n having one representation), A094380, A094381.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a094379 = (+ 1) . fromJust . (`elemIndex` a066955_list)
    -- Reinhard Zumkeller, Mar 23 2012
  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]