cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094388 Expansion of (1- 2*x - x^2)/((1-x)*(1-3*x)).

Original entry on oeis.org

1, 2, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050, 177148, 531442, 1594324, 4782970, 14348908, 43046722, 129140164, 387420490, 1162261468, 3486784402, 10460353204, 31381059610, 94143178828, 282429536482, 847288609444
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Binomial transform of 0^n + A001045(n).
From J. M. Bergot, Nov 10 2012: (Start)
Form an array with the first row and column containing all 1's: m(n,1) = m(1,n) = 1 for n=1,2,3,... An interior term m(i,j) is the sum of all preceding terms in row(i) and all preceding terms in column(j): m(i,j) = Sum_{k=1..j-1} m(i,k) + Sum_{l=1..i-1} m(l,j). The sum of the terms in each antidiagonal will reproduce the terms in this sequence beginning at a(0).
The upper left corner of the array begins
1 1 1 1 1 ...
1 2 4 8 16 ...
1 4 10 24 56 ...
1 8 24 66 172 ...
1 16 56 172 490 ...
...
(End) [edited by Jon E. Schoenfield, Sep 08 2018]

Crossrefs

Programs

Formula

a(n) = 3^n/3 - 0^n/3 + 1.
a(n+1) = 2*A007051(n).
a(n) = A034472(n-1), n > 0. - R. J. Mathar, Sep 05 2008
G.f.: G(0), where G(k)= 1 + 3^k*x/(1 - x/(x + 3^k*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f.: (1/3)*(-1 + 3*exp(x) + exp(3*x)). - G. C. Greubel, Sep 27 2024