cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094394 Odd composites m that divide Fibonacci(m)-1.

Original entry on oeis.org

323, 2737, 4181, 6479, 6721, 7743, 11663, 13201, 15251, 18407, 19043, 23407, 27071, 34561, 34943, 35207, 39203, 44099, 47519, 51841, 51983, 53663, 54839, 64079, 64681, 65471, 67861, 68251, 72831, 78089, 79547, 82983, 86063, 90061, 94667
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

No terms satisfy the Fermat criterion 2^(a(n)-1) mod a(n) = 1. - Gary Detlefs, May 25 2014
For each prime p, Fibonacci(p) = 5^((p-1)/2) mod p, so p divides Fibonacci(p) - 1 for each prime p=10k+-1. Hence it is interesting to seek also nonprimes with the same property, a motivation for this sequence. - Robert FERREOL, Jul 14 2015

Crossrefs

Programs

  • Maple
    with(combinat):test:=n->(fibonacci(n)-1) mod n= 0:
    select(test and not isprime ,[seq(2*k+1,k=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2, 50000], OddQ[#] && ! PrimeQ[#] && Mod[Fibonacci[#] - 1, #] == 0 &]
  • PARI
    main(m)=forcomposite(n=1,m,if(((n%2==1)&&(fibonacci(n)-1)%n==0),print1(n,", "))); \\ Anders Hellström, Aug 12 2015

Extensions

Offset corrected by Giovanni Resta, Jul 20 2013