A094421 a(n) = n * (6*n^2 + 6*n + 1).
13, 74, 219, 484, 905, 1518, 2359, 3464, 4869, 6610, 8723, 11244, 14209, 17654, 21615, 26128, 31229, 36954, 43339, 50420, 58233, 66814, 76199, 86424, 97525, 109538, 122499, 136444, 151409, 167430, 184543, 202784, 222189, 242794
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([1..40], n-> n*(6*n^2+6*n+1)); # G. C. Greubel, Oct 30 2019
-
Magma
[n*(6*n^2+6*n+1): n in [1.40]]; // G. C. Greubel, Oct 30 2019
-
Maple
A094421:=n->n * (6*n^2 + 6*n + 1); seq(A094421(n), n=1..40); # Wesley Ivan Hurt, Feb 12 2014
-
Mathematica
Table[n(6n^2+6n+1), {n, 40}] (* Wesley Ivan Hurt, Feb 12 2014 *) LinearRecurrence[{4,-6,4,-1},{13,74,219,484},40] (* Harvey P. Dale, Jan 04 2016 *)
-
PARI
vector(40, n, n*(6*n^2+6*n+1)) \\ G. C. Greubel, Oct 30 2019
-
Sage
[n*(6*n^2+6*n+1) for n in (1..40)] # G. C. Greubel, Oct 30 2019
Formula
Equals n * A003154(n) (star numbers).
G.f.: x*(13 + 22*x + x^2)/(1-x)^4. - Colin Barker, Aug 02 2012
E.g.f.: x*(13 + 24*x + 6*x^2)*exp(x). - G. C. Greubel, Oct 30 2019
Comments