cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094429 Given the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 7 -14 7], a(n) = (-) rightmost term of M^n * [1 1 1].

Original entry on oeis.org

0, 7, 42, 196, 833, 3381, 13377, 52136, 201341, 773122, 2958032, 11291903, 43042727, 163918671, 623875840, 2373568575, 9028148962, 34334213564, 130560389505, 496440779373, 1887579497489, 7176808297736, 27286630574917
Offset: 1

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

M is derived from the Lucas polynomial: x^3 - 7*x^2 + 14*x - 7 with a root (and eigenvalue of the matrix): 3.801377358... = (2*sin(3*Pi/7))^2, the convergent of the sequence.
From Roman Witula, Sep 29 2012: (Start)
The Berndt-type sequence number 16 for the argument 2*Pi/7 (see Formula section and Crossrefs for other Berndt-type sequences for the argument 2*Pi/7 - for numbers from 1 to 18 without 16).
Note that all numbers of the form a(n)*7^(-1 - floor((n-1)/3)) are integers and even a(10) and a(11) are divisible by 7^5. (End)

Examples

			a(5) = 833. M^5 * [1 1 1] = [ -42 -196 -833].
We have 4*a(4) - a(5) = 4*a(5) - a(6) = 7*a(2) = 49, 88*a(10) = 23*a(11), and a(3) = 6*a(2), which implies the equalities c(4)*(s(1))^6 + c(2)*(s(4))^6 + c(1)*(s(2))^6 = 6*(c(4)*(s(1))^4 + c(2)*(s(4))^4 + c(1)*(s(2))^4) and
s(2)*(s(1))^8 + s(4)*(s(2))^8 + s(1)*(s(4))^8 = 6*( s(2)*(s(1))^6 + s(4)*(s(2))^6 + s(1)*(s(4))^6). - _Roman Witula_, Sep 29 2012
		

Crossrefs

Programs

  • Magma
    I:=[0,7,42]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, May 09 2018
  • Mathematica
    Table[(MatrixPower[{{0, 1, 0}, {0, 0, 1}, {7, -14, 7}}, n].{-1, -1, -1})[[3]], {n, 23}] (* Robert G. Wilson v, May 08 2004 *)
    LinearRecurrence[{7,-14,7}, {0,7,42}, 50] (* Roman Witula, Aug 13 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(7*x^2*(1-x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = -(([0, 1, 0; 0, 0, 1; 7, -14, 7]^n)*[1,1,1]~)[3]; \\ Michel Marcus, May 10 2018
    

Formula

From Colin Barker, Jun 19 2012: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3).
G.f.: 7*x^2*(1-x)/(1 - 7*x + 14*x^2 - 7*x^3). (End)
a(n) = c(4)*(s(1))^(2*n) + c(2)*(s(4))^(2*n) + c(1)*(s(2))^(2*n) = (-1/sqrt(7))*(c(1)*(s(1))^(2*n+3) + c(2)*(s(2))^(2*n+3) + c(3)*(s(3))^(2*n+3)) = (-1/sqrt(7))*(s(2)*(s(1))^(2*n+2) + s(4)*(s(2))^(2*n+2) + s(1)*(s(4))^(2*n+2)), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective odd powers see A217274, see also A215493 and comments to A215494). For the proof of these formulas see Witula-Slota's paper. - Roman Witula, Jul 24 2012

Extensions

More terms from Robert G. Wilson v, May 08 2004